
Submitted by
Dipl.-Ing.
Vlad-Ilarie Precup, BSc.

Submitted at
Institute for
Software System
Engineering

Supervisor
Prof. Dr.
Alexander Egyed,
Head of Institute

Co-Supervisor
Dipl.-Ing.
Hannes Thaller, BSc.

July 2018

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Cluster Analysis for
Multivariate
Application Performance
Management Issues

Master Thesis

to obtain the academic degree of

Master of Science

in the Master’s Program

Internationaler Universitätslehrgang
Informatics: Engineering & Management





Acknowledgements

First of all, I would like to express my gratitude to Prof. Dr. Alexander Egyed and
Dipl.-Ing. Hannes Thaller, for their continuous support, guidance and confidence in
me for reaching the goals of the Master thesis in the given time frame. At the same
time, I am extremely grateful to Dr. Herwig Moser for his guidance, dedication
and professionalism in representing the company’s objective. Furthermore, their
mentorship and continuous feedback have been crucial to the delivery and success
of the present project.

I would also like to thank Dr. Wolfgang Beer and Dipl.-Ing. Alexander Scheran
for their friendliness and support as well as for enabling the collaboration frame-
work between Dynatrace, and me as their collaborator.

My sincere appreciation and gratitude also goes to Prof. Dr.phil. Dr.h.c.mult.
Bruno Buchberger for his effort of making everything happen. His dedication for
the Universal Computing and Business Master program and his energy motivated
me throughout the entire study period.

Last but not least, I am grateful for having the chance to meet and exchange
ideas with Dr. Otmar Ertl and Hans Kohlreiter, BSc. Their advices have been
very important to me and the insightful conversations that we had, sparked ideas
that drove the project forward in a very smooth manner.

Overall, Dynatrace has been an ideal place for innovation and experimentation.
The office climate has been pleasant and friendly at all times, so I am grateful for
this wonderful experience. Thank you, Dynatrace, for having had me as part of
your team!

The research reported in this monograph has been partly supported by the Austrian Ministry for
Transport, Innovation and Technology, the Federal Ministry of Science, Research and Economy,

and the Province of Upper Austria in the frame of the COMET center SCCH.

III





Abstract

With the growth in size and complexity of the software systems, their monitoring
becomes more difficult to control. Generally, maintaining complex software sys-
tems imply complex reporting of the identified problems within them. However,
this can also cause a more-than-necessary amount of detected problems. In this
regard, a balance between frequent monitoring problem notification and coarse
reporting is essential for running software systems effectively and efficiently. This
thesis tackles the business problem of reducing the recurrent monitoring issue
overload for users by systematically using unsupervised techniques to analyze and
cluster previously-identified monitoring issues. We firstly propose a data selection
and pre-processing method to prepare the monitoring data for clustering. Then we
choose the most suitable clustering algorithm for the problem based on our com-
parison experiment and develop a lightly-customized version of the Wave-Hedges
distance metric function to compute the distance matrix between the problem sam-
ples. We show the ground truth for a restricted data set and present the results of
the parameter optimization technique based on external evaluation metrics. After
evaluating the performance of the clustering model based on the obtained param-
eters, we show that our method can generalize for vast amounts of data and we
conclude by comparing our method to the intuitive approach in the context of the
business conditions imposed by our problem.

V





Contents

1. Introduction 1
1.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Business Context 5
2.1. Problem Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Business and Research Goals . . . . . . . . . . . . . . . . . . . . . . 9

3. Theoretical Background 11
3.1. Application Performance Management . . . . . . . . . . . . . . . . 11
3.2. Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1. Data Collection and Integration . . . . . . . . . . . . . . . . 12
3.2.2. Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 12

3.3. Unsupervised Machine Learning . . . . . . . . . . . . . . . . . . . . 14
3.3.1. Cluster Analysis and Clustering Algorithms . . . . . . . . . 14
3.3.2. Distance Metrics as Parameters for Data Clustering . . . . . 16
3.3.3. Parameter Optimization of the Clustering Algorithms . . . . 17
3.3.4. Clustering Evaluation: Measuring the Clustering Quality . . 18
3.3.5. Data Visualization . . . . . . . . . . . . . . . . . . . . . . . 20

4. Method: Clustering the Application Performance Management
Problems 22
4.1. Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2. The Self-normalizing Distance Metric . . . . . . . . . . . . . . . . . 23

4.2.1. Monitoring Problem Data Model . . . . . . . . . . . . . . . 23
4.2.2. From Similarity to Distance: Wave Hedges . . . . . . . . . . 25
4.2.3. Distance Metric Optimization . . . . . . . . . . . . . . . . . 25

4.3. Parameter Optimization for the DBSCAN Algorithm . . . . . . . . 27

5. Experiments 28
5.1. Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1. Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28

VII



5.2. Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.1. Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2. Algorithm Comparison . . . . . . . . . . . . . . . . . . . . . 30

5.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1. Evaluation Test Setup . . . . . . . . . . . . . . . . . . . . . 34
5.3.2. Experiments Statistics . . . . . . . . . . . . . . . . . . . . . 38
5.3.3. Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . 41
5.3.4. Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . 44
5.3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6. Related Work 50

7. Conclusion 52

8. Future Work 55
8.1. Product Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2. Cluster Analysis Performance Optimization . . . . . . . . . . . . . 55

A. Code listings 57

List of Figures 59

List of Tables 61

List of Code Snippets 61

Glossary 62

Acronyms 63

Bibliography 65

VIII



1. Introduction

1.1. Problem Statement

Complex software requires extensive monitoring to ensure that it runs in normal
parameters. Some organizations choose to develop their own monitoring mecha-
nisms using existing libraries and development tools. But since this requires an
enormous effort and significant expertise from the development team, many or-
ganizations choose to use professional solutions. One such solution is offered by
Dynatrace.

Dynatrace offers a suite of tools that target these specific scenarios. The tools
come in various packaging solutions such as Software-as-a-Service (SaaS) and can
be easily integrated with existing software deployed in public or private clouds,
on mainframes or even on private servers. Once the service is integrated with
the deployed software system, it firstly discovers its topology on all its levels of
abstraction: from the underlying infrastructure such as the Virtual Machines to
the business applications or services. Its high degree of integration enables the
Dynatrace service to monitor a wide variety of components, ranging from cloud
platforms and infrastructure components to web applications and their business-
specific web pages.

Each of the detected components have certain parameters: a state1 and various
relationships or communication patterns2 with other components in the topol-
ogy3. All these parameters are closely monitored and analyzed for anomalous
behavior. Detected anomalies are captured and reported back to the system as
monitoring events, which are consequently correlated using an advanced propri-
etary mechanism to form monitoring problems ([3]). Data represented at this level
of abstraction is the main focus subject for this thesis.

1Running environment parameters such as processor or memory usage for virtual machine hosts
2As we will see in the next chapter, there are two types of relationships: infrastructure-related

and business logic-related
3The deployment architecture of the monitored software system

1



Monitoring problems emerge when one or more components in the distributed
system are affected by extrinsic factors such as high load on servers or by intrinsic
factors, such as hardware or software malfunctions. All the events which form
a problem have the same conceptual root-cause and indicate a real user impact.
From the reported data point of view, they can be viewed as a collection of events
accompanied by various pieces of metadata.

Similar to process industry [38], it is easy to understand that the growth in soft-
ware systems complexity – both in terms of business logic and deployment model
– correlates with a growth in the amount of detected anomalies or alarms. The
more anomalies are reported, the less relevant they can become for the system’s
supervisor, as their amount becomes overwhelming and nearly impossible to deal
with. Hence, instead of reporting monitoring alarms individually, a more compact,
less verbose, yet comprehensive and insightful reporting method is needed. One
such potential method aggregates the data into categories of alarms (or problems)
which show significant similarity and presents the categories of alarms rather than
individual alarms to the supervisor. This, in turn, raises the problem of finding the
similarity criteria and grouping the alarms into the afore-mentioned categories.

1.2. State of the Art

From a data point of view, as we will see in the subsequent chapters, grouping or
classifying objects is strongly related – or rather equivalent – to cluster analysis. As
described by Han, Kamber, and Pei [23], cluster analysis (also known as clustering)
is the process of finding structure in unstructured data.

The problem of noise reduction by cluster analysis has been tackled in vari-
ous manners by scientific communities in diverse fields, from distributed systems
monitoring to industrial processes or general process models.

The closest field to the current thesis is undoubtedly the one of distributed
systems monitoring. In the past decade, from the emergence of Service-Oriented
Architectures (SOA) [44] and later Microservices [32] in software engineering, the
deployment footprint has exploded and cloud computing has been acquiring an
increasing portion of the market share. As a consequence, cloud monitoring and
anomaly detection play a significant role in the overall healh of software systems
deployed in public or private clouds. Monitoring oftentimes involves significant
computational resources over time, however they are easily disregarded. In their
recent work, Wang et al. [49] propose a proactive approach to automatically adjust-
ing monitoring data verbosity. This is achieved by firstly correlating metrics and

2



disregarding redundant metrics, then detecting anomalies based on the deviations
given by the metrics’ Cosine similarities. Based on this data, a reliability model is
built, which helps adjust the metrics collection rate based on the likelihood of fault
occurrence. Metrics represent one aspect of monitoring. Another aspect, perhaps
even more significant, is represented by events. Quiroz et al. [37] present a relative
density-based clustering analysis approach for the events of self-monitoring dis-
tributed systems. In the context of this research, events are represented by points
in space. To cluster these points, a bottom-up approach is proposed, where the
problem space is divided into regions and clusters are identified in each region in
a decentralized manner.

The immediately next area of interest, which is closely related to distributed
systems monitoring, is diagnostics event log processing. In their article, A Data
Clustering Algorithm for Mining Patterns From Event Logs, Vaarandi [47] proposes
a density-based clustering approach to analyze and group similar log entries. The
algorithm iterates over the data in three different steps: firstly it identifies the
so-called 1-regions consisting of data samples that share similar values for just one
attribute. Then it builds the cluster candidates by identifiying how many regions a
certain entry belongs to. Finally, the regions having a large enough support value
are promoted to clusters.

In a slightly different form, event logs can also be used to trace real-life events
(and especially events originating from medical systems). Based on this type of
logs, process mining is able to extract process models. The downside, however,
is that they tend to be unstructured and hard to comprehend. To alleviate this
issue, Jagadeesh et al. [30] propose a context-aware approach to (event) trace
clustering based on a modified generic edit distance and evaluate the outcome
using established metrics in the context of process mining. The edit distance,
also known as the Levenshtein distance, computes the number of edit operations
needed to transform one sequence into the other. Finally, the authors compare
the clustering outcome using various distance measures based on various process
mining indices. In another research paper, Song, Günther, and Aalst [46] view this
problem from a slightly different angle (and with a different practical example):
traces are transformed to points in the n-dimensional space. Next, well-known
distance measures and various clustering techniques are used to cluster the traces.

From process models we turn to process industries. In process industries, alarm
floods have become a stringent problem with the factory automation. Industrial
machines are constantly monitored to ensure they run under normal conditions,
also known as nominal parameters. However, depending on the fine-tuning of the

3



systems, they might under-react, in which case the consequences can be disastrous,
or over-react, in which case they send alarms at a rate that is overwhelming for
the human workers. The latter cases are called alarm floods [2]. In this paper, the
authors propose an unsupervised method for grouping alarm floods by first using
the Jaccard distance [29] to find dissimilarities between alarm sequences, then
clustering them using the Agglomerative Hierarchical Clustering technique [45].
In another approach, Improved correlation analysis and visualization of industrial
alarm data [52], which relies merely on a binary alarm data moded, the Gaussian
kernel [5] is applied to the binary data over time and and the resulting Gaussian
functions are superimposed. The obtained continuous functions are then compared
with each other using Pearson correlation coefficient [34]. The most systematic
approach is used by Rodrigo et al. [38], who combine alarm logs, process data
and connectivity / topological model analysis to not only group similar alarms
in an alarm flood, but also identify the causal alarm. The most relevant part
of the method to the present thesis is the actual classification. After a careful
removal of irrelevant chattering alarms and the generation of alarm sequences, the
authors propose the use of a modified Smith-Waterman-based algorithm [13], a
dynamic programming approach used mainly in molecular sequence analysis, to
build a similarity matrix before feeding the data to the clustering algorithm. Since
the algorithm is computationally expensive, the authors optimize the similarity
computation step by first determining if the sequences have enough alarms in
common. A common denominator between the last three approaches presented
above is the use of the Agglomerative Hierarchical Clustering to find groups of
similar alarms or alarm sequences.

1.3. Solution Overview

This thesis tackles various aspects of grouping monitoring problems. We start by
analyzing the business scenarios and identifying the significant attributes which wil
compose the problems to be clustered. Based on the type of these attributes and
the problem space, we examine various distance measures and various clustering
techniques. Finally we evaluate the outcomes of these techniques and perform
various tests based on data originating from the Dynatrace system. The novel
contributions brought by this thesis are:

• The selection and pre-processing of the data to be clustered.

• The self-normalizing distance function, that is tailored to the domain and
the type of data to be clustered.

• The methodology used for parameter estimation and clustering model eval-
uation.

4



2. Business Context

The research conducted as part of this thesis is the outcome of an industry project
in collaboration with Dynatrace, one of the most important APM solution R&D
company. As the stakeholder for this project is Dynatrace, the context of the
research was provided by the company and thus, the project aims at solving a
very specific business problem.

2.1. Problem Context

The Topology. Each software system has multiple hardware and software com-
ponents. Generally, there are two methods of discovering the topology: either
through a discovery service or by deploying agents / injecting instrumentation
code on the underlying infrastructure. Since the former method cannot be used
in all cases as not all the software deployments ensure the existence of a discovery
service, Dynatrace integrates with the systems using the latter approach. Once
integrated, Dynatrace is able to identify and classify all these components, which
we will further call entities. Subsequently, it builds a directed graph with the
nodes being represented by entities and the edges – by the relationships between
them. According to the official product documentation [18], there are two types
of relationships between entities:

1. The Business-logic relationships belong to the ”horizontal path” which
transactions follow, as illustrated in figures 2.1 and 2.3. For example, a
transaction is initiated by a user action and can follow through various ap-
plications and services. The capability of Dynatrace to identify and correlate
this type of relationships and monitor the transactions flowing through them
is called the PurePath Technology [18].

2. The Infrastructure relationships between different levels of abstraction of
the previously-mentioned components: from the service itself relying on a
certain technology, for instance NodeJS, through the process hosting this
service, all the way to the (virtual) machine where the process runs (and
eventually the hypervisor hosting the VM). This vertical view of the infras-
tructure that Dynatrace conceives is called the PureStack Technology [18].

5



These relationships between various entity types are depicted in figure 2.1. As
previously stated, discovering these relationships is possible due to the deployed
agents. In addition to this, there is another functionality performed by the agents:
runtime data collection and instrumentation of the components where they are
deployed. They are responsible for collecting and sending data to the Dynatrace
infrastructure for further processing. Dynatrace uses heuristics and statistical
models to obtain higher-level information from the data sent by the agents. A
significant part of this information is represented by events and problems.

Figure 2.1.: The PurePath and the PureStack. Source: Dynatrace [18].

Events and Problems. In the Dynatrace-specific terminology, events can be
considered as the building blocks of problems. Each problem in the Dynatrace
data model is a subgraph of the infrastructure topology graph presented above,
since it represents the events, or malfunctions of one or more entities belonging to
the topology. Nodes in problem graphs have a somewhat different interpretation
than the ones in topology graphs. They represent events which occur at the level of
certain entities from the topology. Edges, however, keep the same interpretation,
so they represent the relationships between the entities at the level of whom events
occur. The event correlation mechanism as well as the relationship establishment
strategies are described in extensive detail in the patent issued by Ambichl et al.
[3].

The Problems Feed is an intuitive view of the problems in a system. It provides
search functionality as well as various levels of filtering. As shown in figure 2.2,

6



both open and closed problems can be explored. In contrast to problems which
occurred in the past (thus they appear as ’closed’), ’open’ problems still persist in
the system at the time of view. This can be observed on the barchart in the top side
of the figure. Below this barchart, the main view shows cards containing various
details about individual problems such as duration and impacted components /
entities. As software systems grow in complexity, the number of reported problems
can in turn grow drastically due to the numerous relationships which potentially
cause anomalous behavior. As a consequence, the problems feed becomes overly
cluttered on one hand, and it loses the strength of its objective, that is to show
the system administrator an overview upon the anomalous behavior of the system
as a whole.

Figure 2.2.: The problems feed screen capture from the Dynatrace client. Source:
Dynatrace [17].

Problem Example. For a complete understanding of the concepts explained
above, let us introduce a simple example, depicted in figure 2.3. By looking at
the system depicted by the topology, we notice how the distributed application is
deployed. There are two high-level components: A (web) application deployed
on an Nginx web server cluster ran in a Linux environment, backed by a collection
of microservices running on various technologies (Apache or Node JS ) in various
environments (Linux or Windows-hosted Docker containers). The figure also illus-
trates both the PurePath and PureStack proprietary technologies and how they
are used for event correlation purposes. The arrows represent the relationships

7



between components in the system. An example of infrastructure/PureStack rela-
tionship is the ”runs on” relationship between the web application and the Nginx
web server cluster. In addition to this, a business-logic/PurePath relationship is
the ”calls” relationship between the application itself and the various microser-
vices. With the aid of these relationships, the entire system topology is discovered
and the events – correlated. The figure intuitively illustrates the entities impacted
by the problem as colored in red together with exclamation marks next to them.
Just by analyzing them, one can draw the conclusion that one of the Linux hosts
supporting the microservices cluster is in a bad state or presents anomalous be-
havior. This causes the microservices cluster to malfunction, which in turn causes
the deployed microservices to present abnormal behavior. Thus, the application
encounters issues each time it calls any of the microservices. This behavior is
detected by Dynatrace and converted into events. All the events are then corre-
lated into a monitoring problem, which is then reported to the end-user/system
administrator.

Figure 2.3.: Event correlation graph in the context of a monitoring problem ex-
ample: graph nodes are represented by components showing abnor-
mal behavior, emphasized by the presence of the exclamation marks.
Source: Dynatrace [17].

8



2.2. Business and Research Goals

In the previous section we presented the role of the problems feed as well as how
it can be undermined by vast amounts of anomalies. The consequences of this
clutter are twofold: on one hand an overview of the problems in the system cannot
be easily observed, and on the other hand the overwhelming amount of problems
cannot be prioritized and acted upon in a timely manner. In process industry, this
phenomenon is called alarm flooding.

One particular property of alarm floods is that they are caused by many alerts
occurring in a short amount of time. The data that we deal in this business case
however is on a superior level of abstraction. Dynatrace monitoring problems are
already a result of extensive data and event aggregation and correlation over time1.
Nevertheless, problems still can and do recur. This is what makes the research for
finding a solution to this problem so interesting and challenging.

By relying on the property described above, our aim is to reduce the amount of
reported information for the purpose of significantly alleviating the consequences
of alarm / problem floods. This implies providing a solution for this problem,
which can be used for grouping the similar / recurring / redundant
problems into clusters.

The user stories which will rely on this solution are:

• The user (system administrator) is able to retrieve problems which are similar
to a certain problem selected from the problems feed.

• The user (system administrator) is able to change the view mode of the prob-
lems feed for their tenant from displaying the list of problems to displaying
the list of groups of similar problems.

• The user (system administrator) can choose to opt out from notifications
regarding new problems similar to a certain selected problem.

Having identified the business scenarios for solving this problem, the main research
goal is to provide an efficient customized clustering technique for the application
performance issues represented by this data. This end goal can be broken down
into further sub-goals:

1In fact, they are network-like structured events which occur in the context of various system
components

9



1. Collaboration with the Dynatrace engineering team in order to gather in-
formation about relevant attributes of problems which can later be used as
inputs for clustering.

2. Feature selection of monitoring problems exposed by the Dynatrace systems.

3. Preparing the data for cluster analysis (i.e. event properties embedding,
other preprocessing).

4. Research of the state of the art in terms of distance metrics and choice /
elaboration of a suitable metric for distance computation between problems.

5. Research of the state of the art in terms of clustering methods and choice of
a suitable clustering algorithm.

6. Evaluation of the performance and accuracy of the devised method. This
includes ensuring that the user stories which rely on it described in the 2.2
section can be successfully implemented and there is no user impact in terms
of responsiveness or false or inaccurate information provided.

10



3. Theoretical Background

This chapter introduces the theoretical concepts used in the thesis. We start
by defining the business domain terminology. Next, we introduce the theoretical
knowledge used for elaborating the solution proposed by the thesis, starting with
basic data mining concepts and ending with more advanced unsupervised learning
concepts.

3.1. Application Performance Management

Application Performance Management or APM solutions are, according to
the Dynatrace official website [16], complex software systems whose purpose is to
monitor runtime information and user transactions and report potential issues, as
well as manage the performance and availability of external software systems in
an intuitive and least-intrusive way for its users. Modern APM solutions have a
proactive behavior rather than a reactive one. Thus, they are capable of discovering
performance issues before system users are (heavily) impacted. This is a key aspect
for software service providers whith offerings under SLAs, as APM solutions help
them to ensure high availability for their services.

Monitoring Events represent operational patterns of components in the mon-
itored system which are unusual in a sense that affect the runtime of the system.
In a nutshell, they represent anomalous behaviors of components. For instance,
monitoring events can indicate the excess of memory usage in a certain virtual
machine, or unusually high latency of connections to a database service. Hence,
they are always characterized by an entity (type) – where the event takes place –
and a type – what exactly happens at the level of that entity.

Monitoring Problems Being the object of this thesis, monitoring problems
represent the high-level view of the issues discovered by the Dynatrace APM suite.
They are the result of coordinated event collection from all the distributed deploy-
ment components of the monitored software system.

Alarm Flooding or in the case of APM, notification overload, is encountered
when the monitored system is impacted by multiple recurrent problems which are

11



similar in certain respects. As a consequence, the APM suite repeatedly (and
redundantly) notifies the system administrators about these problems. In many
cases, the effectiveness and credibility of the system suffer as the system adminis-
trators can ignore, or on the contrary, dedicate effort on investigating and eventu-
ally addressing a problem that had been addressed before.

3.2. Data Mining

The problem addressed by this thesis is in the field of data mining. Sometimes
interchangeably used for Knowledge Discovery from Data (KDD), the concept of
data mining refers to the process of discovering patterns in a large amount of
data [12]. In their book, Han, Kamber, and Pei [23] describe the process of data
mining as being ”automated or convenient” and involve processing data from ”large
databases, data warehouses, the Web, other massive information repositories, or
data streams.” As described in the formerly-mentioned curriculum proposal, data
mining is often used in conjunction with other domains such as machine learning.
Later in this section we are going to address the latter concept in further detail.

3.2.1. Data Collection and Integration

Data collection and integration is the step performed through which data is col-
lected (i.e. queried from databases, requested from service endpoints etc.) and
eventually integrated, if multiple data sources are used.

3.2.2. Data Preprocessing

Also known as data preparation, data preprocessing is the phase of a data mining
process where data is prepared for modelling. As oftentimes data in its raw format
is incompatible with modeling algorithms, through this phase it is selected and
integrated from various sources, its quality is ensured and ultimately it is formatted
and transformed into a form which is appropriate for processing using data mining
/ machine learning algorithms.

Feature Extraction is one of the data preprocessing steps through which data
is transformed such that non-numeric representations of data such as text and
images are transformed into numerically represented features supported by the
various data mining and machine learning algorithms.

The ”Curse of Dimensionality”. As Keogh and Mueen [31] synthesize in
their contribution, the curse of dimensionality describes the exponential increase

12



in terms of complexity caused by additional dimensions to data, as initially stated
by Bellman [7] in 1957. The greater the number of features is in a data model,
the more complex it is for data mining and machine learning algorithms to process
it. Furthermore, the visualization or graphical representation of such a complex
data model becomes close to impossibe to conceive (and imagine). In fact, a data
set with more than 3 dimensions becomes exponentially unintuitive and infeasible
with each added dimension.

The Bag of Words Representation is a data format where sequences of words
(also known as documents) are represented as a numeric matrix. This is often
called the vector space model (or VSM) [15] and the process through which it is
obtained contains the following operations:

• Tokenizing the text documents by using certain characters as token sepa-
rators.

• Counting the occurrences of the previously identified tokens in each docu-
ment.

• Optionally normalizing and weighing tokens based on certain rules.

The result is a sparse two-dimensional matrix with one row per document and one
column per identified token.

The most important VSM transformation technique is the term frequency model
which implements tokenization and occurrence counting. As a result, it produces
a two-dimensional array which contains histograms of tokens for each document.

The term frequency – inverse document frequency (TF-IDF) model also nor-
malizes the term frequency computed by the term frequency model, based on the
following formula:

tf-idf(t, d) = tf(t, d)× idf(t, d),

where the count vectorization is performed by tf(t, d) and the inverse document-
frequency is computed by

idf(t, d) = log
nd

1 + df(t, d)
+ 1.

In the equation above, nd represents the total number of documents and df(t, d)
yields the number of documents that contain token t. Once the tf-idf is computed
for each token in each document, each row is then normalized by the Euclidean
norm.

13



Normalization or scaling is a data transformation technique used to scale it
in order to make it more comparable on one hand and to help remove the bias
introduced by large range differences of the attributes on the other hand. This bias
is perceived by data mining algorithms, which generally use absolute differences for
comparing objects. Hence, attributes with large ranges have a greater impact than
attributes with lower ranges. There are various normalization methods, among
which we remind:

• Min-max normalization, which scales the data attributes within a speci-
fied range.

• Z-score normalization (also known as mean-variance or standard scal-
ing), which removes the attribute mean and scales the values to the unit
variance.

• Robust scaling, which scales data based on statistics which are resilient to
outliers. In this case Z-score normalization does not yield favorable results.

Modeling is the most important phase of a data mining project, as it revolves
around choosing the approach or the algorithm, then training and evaluating the
model.

3.3. Unsupervised Machine Learning

Machine Learning is, as the term suggests, the task of automated learning
based on digital data. With applications in fields like biology, medicine or au-
tonomous driving to name a few, machine learning is currently one of the trending
research topics in the fields of engineering and artificial intelligence.

Unsupervised Learning is the branch of machine learning which focuses on
learning from unstructured data, or rather understanding and finding structure in
this type of data, visualizing or compressing it, unlike supervised learning, which
is used for predicting future data based on previous knowledge, according to Prof.
Hochreiter [24].

3.3.1. Cluster Analysis and Clustering Algorithms

Also known as clustering, cluster analysis is the task of finding structure in un-
structured data, or grouping a set of objects based on their similarities and/or
distances between them: the objects within a cluster have high similarity, but
have high dissimilarity to objects in other clusters [1]. As for cluster analysis there

14



is no one-solution-fits-all approach – a circumstance also known under the name of
the No Free Lunch Theorem [50] – the appropriate algorithm as well as its param-
eters (including the distance measure) highly depend on the data to be clustered.
According to Estivill-Castro [20], who studied the vast domain of cluster analysis,
there are multiple types of clustering techniques, among which we remind:

• Centroid models, which represent each cluster by a centroid, either virtual
or among one of the existing items in the data set. The most representa-
tive and widely known centroid-based clustering technique is the k-means
algorithm.

• Connectivity models, which are based on distance connectivity. Hierar-
chical clustering methods are the most representative, with BIRCH being
one of the methods suitable for high data volumes.

• Message-passing models, which iteratively form clusters using the infor-
mation obtained by passing messages between the data samples. Affinity
propagation is one of the most representative message passing clustering al-
gorithm.

• Density models, which define clusters as uniformly dense regions of sam-
ples. DBSCAN is the most popular density-based clustering method.

Mean Shift is a clustering approach which, like k-means, characterizes the iden-
tified clusters as centroids. What makes it special though, is that it uses mean
shift vectors for centroids, which point to the maximum increase in the density
of samples. For computing this density, it requires repeated computation of near-
est neighbors for samples. This is an iterative method, and for each iteration it
performs one step towards the centroids shown by the mean shift vectors. The
algorith stops when the changes in centroids are below a certain threshold.

BIRCH or Balanced Iterative Reducing and Clustering using Hierarchies [53],
is one of the more recent hierarchical clustering techniques, whose main goal is
to process a high volume of numerical data by combining classical hierarchical
clustering with iterative partitioning of data based on a Euclidean distance metric
and using a tree data structure – the Characteristic Feature Tree. This empowers
the algorithm to produce clusters with only one scan of the data set, making it
highly scalable for large amounts of samples.

Affinity Propagation is a similarity-based clustering, where ”affinity”-related
information is passed between objects through a message sending mechanism. The
affinity is usually chosen to be the negative Euclidean distance. Although affinity

15



propagation finds ”exemplars” or centroids, it does not require the number of
clusters as a parameter [21]. The data which are iteratively passed between samples
are the responsibilities (a quantification of the evidence that a sample serves as
an exemplar for the other) and the availabilities (a quantification of the evidence
that a certain sample is indeed an exemplar).

DBSCAN has been so far the most widely-used density-based clustering algo-
rithm. Although initially proposed over two decades ago by Ester et al. [19], due to
its simplicity but at the same time, performance, power and versatility, DBSCAN
has been researched and discussed in multiple papers among which we remind
DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation [22] and DB-
SCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN [42].
The principle behind DBSCAN is simple and intuitive: the density of a cluster is
defined by the minimum number of samples which need to we within a predefined
epsilon distance from the current sample in order for this sample to become a core
sample and thus belong to or create a new cluster. The repeated transitivity of
this concept to other sets of points is named density-reachability. It follows that
any point a is density-connected to point b if there exists a core point o such
that both a and b are density-reachable from o. An advantage of DBSCAN over
k-means is that it is capable to detect noise or samples which should not belong
to any cluster, according to Schubert et al. [42].

3.3.2. Distance Metrics as Parameters for Data Clustering

Distance or dissimilarity metrics are undoubtedly the most influential parameter
of most of the clustering algorithms in terms of shape and content of the identified
clusters. They quantify the concept of distance between samples, as an inverse of
the similarity. As a matter of fact, one could say that

similarity(a, b) = 1− distance(a, b). (3.1)

There is a plethora of distance metrics, both symmetric and asymmetric. Based on
the data set and the problem contstraints, the distance measure should be carefully
selected. This, however, is not an easy task and extensive experimentation might
be needed to find a suitable candidate. Among the existing distance functions,
we remind the Euclidean (3.2), Minkowski (3.3) or Wave Hedges (3.4) distance
functions, however custom distance measures can also be conceived for clustering
tasks.

dEuc(a, b) =

√√√√ n∑
i=1

(bi − ai)2 (3.2)

16



dMk(p)(a, b) = p

√√√√ d∑
i=1

|bi − ai|p (3.3)

dWH(a, b) =
n∑

i=1

(1− min(ai, bi)

max(ai, bi)
) (3.4)

An extensive list as well as a comprehensive survey on distance functions can be
found in the work carried by Cha [11].

3.3.3. Parameter Optimization of the Clustering
Algorithms

The next important aspect after defining or choosing the distance function is the
estimation / optimization of the other clustering parameters. When no ground
truth is known, the estimation procedure is specific to each clustering algorithm
and can vary significantly. For example, in the case of k-means clustering, deter-
mining the n clusters (number of clusters) parameter, line search is recommended
to be used: for each value assigned to n clusters, an internal evaluation metric of
the clusters is computed. We mention some of the internal evaluation metrics in
subsection 3.3.4. After the process is completed, the parameter value associated
to the best evaluation result is then used for clustering.

For DBSCAN specifically, choosing the parameters is performed through a series
of steps. First, the min pts parameter is determined. In a subsequent paper Sander
et al. [41] suggest setting the min pts parameter to twice the number of dimensions
of the data set. The remaining parameter, eps (ε), can be approximated in a data-
driven way, using the ”elbow” / ”knee” / ”valley” method, described in the initial
article and reiterated in 2017 by the authors. A brief description of the ε parameter
estimation is presented below:

1. Parameter k is chosen, as equal to the value of min pts.

2. For each sample, its distance to the k -th nearest neighbor is computed.

3. For all samples, the previously-obtained values are ordered and visualized,
as presented in the sample figure 3.1. This is called the k-distance graph.

4. The cutoff point is determined: if the maximal k-distance value (or the
”valley” point) before the sudden increase in k-distance values is identified,
this becomes the eps value for the clustering model.

17



The reasoning behind this is that this cutoff value determines the generation of
clusters for the samples whose k-distance is below it given the stability of their
values1 and it leaves all the samples with k-distance above it as outliers or noise,
due to the exponential growth of this distance.

Figure 3.1.: K-distance graph: the ordered k-distances to each sample are repre-
sented by the blue line; the cutoff line is represented in red.

Ground Truth in Parameter Optimization

When the ground truth is known, it can be considered as a form of supervision
represented by the cluster labels [23]. Hence, since all custering problems can be
considered optimization problems, in this case a parameter search strategy can be
used, in a similar way to supervised hyperparameter tuning.

3.3.4. Clustering Evaluation: Measuring the Clustering
Quality

Evaluation of clustering can itself be a difficult task and it varies based on the
clustering approach as well as the existance or absence of the ground truth labels.
This is why there is a significant overlap between parameter optimization and clus-
tering evaluation. Generally clustering validation is performed using an internal

1Note that since k is set to the min pts parameter, all the samples with k-distance smaller than
the cutoff satisfy the cluster creation condition.

18



/ intrinsic measure or quality score when no information about ”correct” clusters
exists or external / extrinsic when the ground truth data exists.

Internal Evaluation

Internal evaluation of data clustering is performed based on the samples which were
clustered by computing an index or score (i.e. the Silhouette coefficient [40] or the
Calinski-Harabaz index [9]). Since these performance criteria are ”borrowed” from
the objective function optimized by particular clustering techniques [1], the major
drawback of such approaches is their limitation to convey a qualitative indicator
of the clustering, especially in the context of methods that optimize a different
objective function (for example, evaluating DBSCAN clustering results using the
scores indicated above, which optimize the objective functions mainly used by
centroid-based clustering, respectively hierarchical methods). As a consequence,
there is no universal score which could be used for validating results of multiple
clustering methods as they heavily depend on the distance metrics as well as the
types of clustering approaches.

External Evaluation

External evaluation is performed based on the ”ground truth”, or sample label-
ing performed externally by a human expert. The potential problem with this
approach is the potentially biased or highly subjective nature of the labels on
one hand and the likelihood of low generalization to unseen / unlabeled data on
the other hand. Nevertheless, as mentioned by Aggarwal [1], external criteria are
preferable to internal ones by virtue of their capacity of avoiding consistent bias in
evaluations especially when used to evaluate the clustering of multiple data sets.
Moreover, external evaluation can offer a starting point towards a more complex
clustering process and result evaluation.However, the usual error computation em-
ployed in supervised learning tasks such as precision and recall can no longer be
used for external evaluation of the clustering results, as their comparison becomes
significantly more complex. Aspects such as similar separation of data into clus-
ters or cluster label permutations need to be taken into account. There are various
similarity measures used for clustering evaluation.

One such measure is the Rand index [26]. This index computes the similarity
of two clusterings by considering all the pairs of samples from both clusterings and
counting the pairs which are either in the same (a) or in different (b) clusters. The
obtained values are stored in a data structure named the contingency matrix:

RI =
a+ b

C
nsamples

2

. (3.5)

19



The problem with this index is that it does not account for situations where
labels are randomly assigned to samples, and as an effect the index is not guar-
anteed to have a value close to zero when such situations occur. This problem is
approached by the adjusted Rand index [33], which is computed by the formula

ARI =
RI − E[RI]

max(RI)− E[RI]
, (3.6)

where E[RI] is the expected Rand index of randomly assigned labels.

Another set of important similarity measures for clusterings is the Mutual
Information (MI)-based scores. Introduced by Bellamy et al. [6], the mutual
information is a measure based on information theory. The similarity terminology
is here replaced by the agreement between the two assignments. The mathematical
formulation is based either on the probabilistic model of the partitions or clusters
or on set theory. Thus, the MI score is given by the formula (probabilistic model):

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

P (i, j) log
P (i, j)

P (i)P (j)
. (3.7)

This formula can be easily translated to the set theory by replacing the proba-
bilities with set cardinalities. Finally, the adjusted MI can be computed using
the same form presented by formula 3.6. More information about the expectation
computation and clustering comparison can be found in the paper Information
Theoretic Measures for Clusterings Comparison: Variants, Properties, Normaliza-
tion and Correction for Chance [51].

In essence, while the pure clustering similarity measures provide relative scores,
their normalized formulas bound the values to the unit interval. In addition, their
adjusted counterparts ensure that their values are 0 when the compared partitions
are random and independent, and 1 when they are identical [39].

3.3.5. Data Visualization

In the field of unsupervised learning in general and especially in clustering, there is
a strong emphasis on finding structure in unstructered information (i.e. grouping
similar objects). Although there are various methods of validating the quality
and soundness of the results, the human nature requires an intuitive explanation
of a certain behavior. The more abstract the patterns in the data are, the more
stringent this need becomes. This is why, a significant part of the unsupervised
techniques is dedicated to visualizing data. Perhaps the most challenging part of

20



viewing unstructured data is the visualization of multivariate data, or data with
a large number of dimensions or attributes.

t-SNE The t-Distributed Stochastic Neighbor Embedding, or t-SNE, is an ad-
vanced technique used for visualizing multivariate data [48]. The approach uses
various mathematical and probabilistic concepts to solve the problem of embedding
data characterized by a large amount of features into a highly-reduced space2. As
it is perfectly synthesized in the Scikit Learn API reference [43], t-SNE first con-
verts similarities between data points to joint probabilities, then it minimizes the
Kullback-Leibler divergence between the previously-computed joint probabilities
of the low-dimensional embedding and the high-dimensional data. Since t-SNE
has a cost function that is not convex, with different initializations we can get dif-
ferent results. Based on the initial approach, SNE, and on the so-called Student-t
Distribution instead of a Gaussian to compute similarities, t-SNE solves the prob-
lems faced by the initial implementation. This, however, exceeds the scope of this
thesis, but the details can be found in the original paper authored by Van Der
Maaten and Hinton [48].

2Generally, two- or three-dimensional space

21



4. Method: Clustering the
Application Performance
Management Problems

This chapter describes the particularities in the approach used to solve the problem
introduced in the first chapter. The most notable contributions to the field are the
following:

• The data collection and feature extraction task.

• The normalized distance metric introduced for using in conjunction with the
clustering algorithm of choice.

• The methodology for optimizing the parameters of the clustering algorithm
based on the business-specific, monitoring data.

Based on the user stories whose support is required for this project, a client API
for collecting monitoring problem data from the Dynatrace environment has been
developed. The API is configuration-based and accepts the following parameters:

• The time interval when problems occurred.

• The Dynatrace backend service endpoint configuration.

This component is called the DataCollector. A correctly configured data collector
instance can be used to query problem data from a user-defined time period. The
client API issues web requests to the Dynatrace service, which sends back data
as a JSON-formatted array of monitoring problem objects. Since the amount of
received information is considerably large, data selection is also performed at the
level of the DataCollector for the purpose of ensuring time and memory efficiency
throughout the entire process.

4.1. Data Collection

As a result of discussions and feedback received from the stakeholders regard-
ing the relevance of features for the problem at hand, the following information

22



is extracted from each problem instance in the response body received by the
DataCollector:

• The problem id - used for reference only.

• The timestamp of the occurrence of the problem - used for reference only.

• The hour of day when the problem occurred, a value computed based on
the timestamp.

• The monitoring events composing the problem graph. For each of the
events, the following data points are extracted:

– The event type

– The entity type/identifier where the event occurred. The internal
naming convention for this attribute is EntityType EntityId. 1

• The total duration of the problem in minutes, computed based on the
durations of all the events pertaining to the problem.

The collected data for each problem is aggregated into a data row in the prob-
lem data model. Numeric values are persisted as such and event-related data is
aggregated into documents (i.e. sequence of words or tokens) containing event
types and entity types / entity id’s separated by spaces. Each entry in the data
set represents a monitoring problem sample.

4.2. The Self-normalizing Distance Metric

In chapter 5 we explain the process of model selection. We emphasize that one of
the criteria for choosing a clustering algorithm is the support for custom distance
functions or precomputed distances.

4.2.1. Monitoring Problem Data Model

The reason why supporting custom metrics is important for the clustering ap-
proach of our choice is the following: as one can notice in figure 4.1, the ranges of
attributes can vary significantly. A first obvious step would be to normalize the
data set, as we did previously for the model comparison and selction. However,

1Generally, the relevant feature is the entity type. However, some entities can be config-
ured internally by the users of the Dynatrace service through a dedicated user interface.
Hence, their significance for our problem is higher. So for these entities we collect the entire
EntityType EntityId token (i.e. without discarding the EntityId).

23



performing this operation results in important information loss, since attributes
would be scaled individually to the same range. This is in principle an issue, since
after a careful analysis of the dynamics of values of the monitoring feature samples,
we concluded that:

• The impact of features to the overall similarity between two samples is
different, depending on the magnitude of the compared values (i.e. the
total duration can have values which are orders of magnitude larger than
the values of other feaures, so it should influence the similarity to a lesser
extent).

• Let pi(k) and pj(k) be the values of a feature k of two samples, Pi and
Pj. The smaller the difference (or ratio) between pi(k) and pj(k), the more
similar the samples Pi and Pj are, from the point of view of feature k.

Figure 4.1.: Data distribution for the monitoring problem data set: duration dis-
tribution is illustrated separately.

The larger the two values pi(k) and pj(k) are, the less impact they should produce
on the similarity between Pi and Pj and conversely, the smaller they are – the
more impact they should produce. We found that the similarity function which
best describes these effects is given by the following formulas. Starting from the

24



similarity with respect to feature k, we have:

s(pi(k), pj(k)) =
min(pi(k), pj(k))

max(pi(k), pj(k))
. (4.1)

Subsequently, generalizing this to the entire feature set of the two samples, we
obtain

s(Pi, Pj) =

|F |∑
k=1

min(pi(k), pj(k))

max(pi(k), pj(k))
, (4.2)

where F represents the feature set for the samples.

4.2.2. From Similarity to Distance: Wave Hedges

So far we considered a similarity function. However, clustering algorithms require
a distance function for comparing objects. As we emphasized in chapter 3 by
introducing equation 3.1, deriving the distance from similarity is trivial. So based
on these findings, we searched for an appropriate distance function. The so-called
Wave Hedges function (3.4) mentioned by Cha [11] adheres to the previously-
identified constraints.

A Well-known Caveat The Wave Hedges distance metric in its current form,
has an obvious caveat: the technical problem caused by the division by zero.
Especially in the case of our feature set, the chance of 0/0 division is extremely
high, due to the sparse representation of the token histogram that we performed
on the event type / entity type documents (see subsection 3.2.2). As suggested by
Cha [11], these situations require careful attention. So in our implementation, the
value 0 is assigned to that term without attempting to perform the division2.

Next, we show how the Wave Hedges distance metric was modified to account
for the particularities of our problem.

4.2.3. Distance Metric Optimization

Normalization

In its current form, the Wave Hedges metric has the property of variability of
the function codomain. Each additional feature / dimension added to the data
increases the codomain upper bound by 1. Since we wanted to provide reliable

2If the values of both samples for an attribute are 0, it means that from the point of view of
that attribute, the two samples are perfectly similar, so the distance between them is 0.

25



metrics over multiple runs and estimate model parameters that can potentially
generalize for multiple (disjoint) sets of monitoring problems, we needed to bound
the codomain of the distance function to a certain interval. The most obvious
method was to bound the codomain to the [0,1] interval by averging the sum:

d(Pi, Pj) =
1

|K|

|K|∑
i=1

(1− min(pi(k), pj(k))

max(pi(k), pj(k))
). (4.3)

At this point, we concluded that normalizing was no longer needed for the moni-
toring problem data sets, as long as this distance measure was used. We will refer
to this measure as NWH.

Magnitude-sensitive Rectification

Although we performed the most obvious optimizations of the distance metric,
there was still one last improvement for the model to completely fit our monitoring
problem data. The ”overfitting” of the model for samples whose feature
differences are extremely high while the values themselves are high. This
could happen especially for the total duration attribute, where the values are
generally many orders of magnitude higher than all the other values (see figure
4.1). In such cases, it is likely that although both total duration values are
high, their difference is also high. This could have such a significant impact on
the distance metric (as it pushes the corresponding term to 1), that it outweighs
the distances between all other features. So, the higher the order of magnitude of
attribute values, the higher the chances are that the distance term between them
tends to 1, although the significance of the feature in these cases diminishes. To
rectify this, a value reduction factor was used to reduce the term contribution
proportionally to the order of magnitude of the distance. Hence, our distance
function became

d(Pi, Pj) =
1

|K|

|K|∑
i=1

(1− min(pi(k),pj(k))

max(pi(k),pj(k))
)

log(|pi(k)− pj(k)|+ 1) + 1
. (4.4)

From this point onwards, we will use the NRWH abbreviation to refer to this
metric.

Start Hour as a Separate Case

We have presented the distance measure applied to all the dimensions except one:
the time of day when the problem started. Since it is a cyclic dimension, where

26



the next value ”above” 23 is 0, it needs to be handled separately. Thus, in order
to account for that, the distance between values of this dimension became

d(shi, shj) =
min(|shi − shj|, 24− |shi − shj|)

12
. (4.5)

By applying this distance metric to all the pairs of samples, we obtained a
distance matrix which could be used instead of the data set as input directly to
the DBSCAN clustering algorithm. In the next chapter we will use this method
throughout the experiments that we performed. The Python code for computing
the self-normalizing metric which supports both NWH and NRWH distance metrics
is presented in appendix A (listing 2). This metric computation component was
implemented using the model adopted by the Scikit Learn toolkit [35] (i.e. using
the fit transform function naming and arguments convention).

4.3. Parameter Optimization for the DBSCAN

Algorithm

One of the most challenging aspects of cluster analysis is setting the correct param-
eters for the clustering algorithm. The challenge is amplified by optimizing these
parameters so that their global values could be successfully used for clustering
multiple disjoint sets of samples.

In this thesis we present a novel methodology3 for finding such parameters by
using an optimization technique which is mainly used for hyperparameter optimiza-
tion in supervised tasks. Various experiments were performed and the parameters
obtained were averaged to obtain the global value. Then we compare this value to
the parameter value obtained by following the intuitive approach proposed in the
original DBSCAN paper by Ester et al. [19].

3Novel in the context of cluster analysis.

27



5. Experiments

The experiments are divided into two main phases:

1. The model selection phase, covered by section 5.2, where we show how we
performed the clustering model selection based on the set of criteria which
support our business requirements.

2. The model evaluation phase, covered by section 5.3, where show how we
evaluated the model against production data.

The entire process is described together with technical details of the implementa-
tion of the project.

5.1. Experiment Setup

For developing this solution, the Python programming language was used. Spe-
cialized modules were implemented and tested and their functionality exposed
through modules for usage in IPython [36] (also known as jupyter) notebooks,
which provide flexibility in the context of a data experimentation-oriented devel-
opment environment. In terms of libraries, various modules from Scikit Learn [35]
were used for analysis and clustering, and Matplotlib [27] and Plotly [28] – for data
visualization.

5.1.1. Data Analysis

Problem data is isolated for each customer of the APM suite offered by Dynatrace.
However, no customer data was used for the scope of this project. In exchange,
data from the self-monitored infrastructure was exposed through a back-end ser-
vice which was accessible from the Dynatrace internal network. This is, of course,
an ideal case in software development, where the development process of an or-
ganization includes the use of the developed product not only while testing it,
but also for ensuring their services run at nominal parameters. Informally, this is
called among the development organizations dogfooding. Hence, the data sources
for this project are:

28



• Development data or data requested from the service endpoint exposed by
the development tenant. This tenant is only used internally for development
and test purposes only, and may feature artificially created monitoring prob-
lems. Development data was used throughout the development and testing
of this project as well as the model selection.

• Self-monitored Dynatrace production data or data obtained from the
environment provisioned by Dynatrace for monitoring their own production
infrastructure1. Data obtained from this environment has been used to eval-
uate the approach proposed by the thesis.

5.2. Model Selection

5.2.1. Data Preprocessing

As we mentioned in section 4.1, the relevant features for the monitoring problem
data analysis are the total duration of the problem, the hour of day when it
is detected and the event-related document. The first two data attributes are
numeric, however the latter is textual. The quality of the data is ensured by the
internal components of the Dynatrace software, so we start from the premise that
the data quality is ensured.

Since data mining or machine learning models require data in numeric format,
once we obtained the data set, the next important step was to transform the textual
event content into a numerically represented feature set. It is worth mentioning
that we are not interested in the token ordering in the text document, due to
the reason that the occurrence order of events in the problem structure is not
important and is also highly dependent on the data acquisition mechanism. Hence,
we could safely use a bag-of-words transformation technique. As we mentioned in
chapter 3, there are various methods which achieve this result. We chose the basic
CountVectorizer. A more complex vectorization technique such as Tf-Idf was
not required in this case for the following reasons:

• Each event type / entity type / entity id occurrence is equally important. If
a certain token appears with a significantly higher frequency than the others
it does not mean that it should be down-weighted.

1Although the Dynatrace production environment is monitored, this environment does not
involve in any way any type of customer data. However, since the data model is the same
across monitored environments, the results presented by this thesis can be generalized across
self- and customer-monitored environments.

29



• Individual vectorized row normalization is not needed, since we have a dif-
ferent normalization strategy, which we will explain in the following section.

5.2.2. Algorithm Comparison

In this section we present the strategy that we adopted for performing cluster
analysis. The clustering approaches that we tested are introduced along with
some of the advantages and disadvantages that they bring, as well as the approach
that we chose in the end.

Cluster Analysis

Since cluster analysis is an iterative, experimental process, as explained in chapter
3, various experiments have been performed to determine the clustering algorithm
which is the most suitable for our task. Before describing this process, it is worth
noting the challenges posed by our problem:

• Heterogeneous data types : as we have seen, problem samples have both nu-
merical as well as textual data attributes.

• Variable ranges in terms of the values of the attributes.

• High dimensionality of data: the least possible dimension count is 4, in the
most simplistic, and rather impractical case2.

• Variable dimensionality, with the variability given by the various event types
and/or entities / entity types which can characterize the monitoring problem.

Since there are numerous clustering algorithms to choose from, we limited the
evaluation to a subset of the most well-known clustering techniques. Next, we
assessed various existing clustering techniques, discussed their benefits and draw-
backs, and finally, based on this evaluation, we chose the most suitable technique
for our problem.

Comparison and Selection

The comparison phase was itself a two-step task: first we selected a subset of
available clustering algorithms, then based on the experiment results, we selected
the ”best” candidate for solving the problem. Hence, the criterion which we used
in the first step to select the candidates for our experiments was the flexibility

2This happens when the data set contains problems that have only one event type in their
composition (and which occurs at a certain entity / entity type).

30



of finding the number of clusters: the method should not require the number of
clusters as a parameter, as the problem that we have requires an approach which
itself should optimize the number of clusters, rather than the clustering approach
requiring the optimization of this parameter (such as in the case of k-means cluster-
ing). This is why k-means was ruled out. Another capability which the clustering
method should have is finding noise. Since there are samples in our problem space
that represent unique problems, we wanted them to be considered outliers / island
clusters rather than assigning them to the closest centroids, an approach taken
by k-means. Taking these facts into account, the resulting clustering algorithm
candidates were:

1. Affinity Propagation

2. Mean Shift

3. DBSCAN

4. BIRCH.

We performed an experimental clustering of 1010 monitoring problems from the
development environment in order to roughly assess the performance of the chosen
algorithms based on default parameters and distance metrics, both in terms of run-
time and clustering accuracy based on intuitive visual analysis. As normalization
technique, the Robust scaler featured by Scikit Learn was used. Visualization of
the 28 dimensions was perform by embedding them in 2 dimensions using t-SNE.

The execution time of the algorithms is presented in figure 5.1. It is easy to
notice the time inefficiency caused by the iterative message passing performed by
affinity propagation. On the opposite side, BIRCH and DBSCAN cluster the data
well below 100 ms due to their efficiency mechanisms, with BIRCH taking 75%
longer to compute the clusters than DBSCAN.

Figure 5.1.: Clustering time for 1010 monitoring problem samples

31



The cluster labels for each of the four cases is presented in figure 5.2. Based on
the coloring of samples3, one can see how clusters are separated. While affinity
propagation does not manage to individualize apparent clusters, mean shift over-
clusters the data set. DBSCAN and BIRCH again have comparable results, as
they manage to cluster at least apparent ”structures” of samples.

Figure 5.2.: Clustering results. Colors represent cluster labels. Due to the reduced
set in the color scheme, more than one cluster can be depicted using
the same color.

3Each cluster is represented by a different color. Due to a high number of clusters though, same
colors can be repeated for multiple clusters

32



Selecting the Clustering Algorithm. The second selection phase has more
relevant and requirements-oriented criteria:

• Time efficiency: The algorithm should be able to cluster the samples within
a time frame which is impercievable by a user, as it would be requested as
part of various end-user facing scenarios.

• Ability to detect outliers: instead of including all the samples in the
cluster models, the algorithm should account for potential outliers which
should not belong to clusters.

• Flexibility in terms of distance metric: The algorithm should not be
tied to a certain metric, but instead it should support a set of predefined
and/or custom distance metrics.

• Arbitrary (concave) shape of clusters: The algorithm should be able to
correctly identify clusters of various ”shapes”, of course, depending on the
chosen distance metric.

The assessment of the selected clustering techniques based on existing documen-
tation as well as the preliminary experiment can be found in table 5.1.

Table 5.1.: Clustering algorithm comparison based on the established criteria

Clustering
algorithm

Time
efficiency

(ms)

Noise
detec-
tion

Distance
metric

Clusters form
factor

Affinity
propagation

3823 No

Negative
Euclidean and
precomputed4

Convex and
Concave

Mean Shift 647 No Internal
Convex and
concave

DBSCAN 20 Yes
Predefined and
precomputed

Any shape with
even density

BIRCH 35 Yes Euclidean only Mainly convex

It is easy to see from table 5.1 what the clustering method that fits our problem
best is. Not only that it is the fastest algorithm, but DBSCAN also features
the flexibility of supporting an external distance metric while also being able to
detect arbitrary-shaped clusters and the noisy samples around them. In the next
section, we present the results of combining this algorithm with the distance metric
proposed in section 4.2.

33



5.3. Evaluation

The purpose of the present thesis is to research and develop a solution to the
problem previously stated in chapter 2. Since generally, machine learning solutions
to problems do not provide completely correct answers to future data, as in proven
mathematical algorithms, evaluation plays a significant role in the process.

5.3.1. Evaluation Test Setup

For the evaluation of the DBSCAN algorithm against the precomputed distance
matrix of samples based on the proposed distance function, we switched our atten-
tion to data obtained from the self-monitored Dynatrace production environment.
We extended our data set to the monitoring problems detected during an entire
month5. Figure 5.3 depicts an initial look at the entire data set. At a first glance,
the t-SNE technique aleady shows an apparent separation of clusters.

Figure 5.3.: The sample data overview, visualized using 2-dimensional t-SNE

Manual Labeling Methodology. What makes the unsupervised techniques
especially challenging to evaluate is the lack of labeled data, also known as ”ground
truth”. In some cases however, the ground truth can be provided by a specialist

5The total amount of problems in this data set is 8638

34



in the problem domain. In the case of the experiments, we labeled the monitoring
issue samples based on extensive discussions and feedback from the stakeholders
(i.e. the Technical Program Manager and Software Architect). However, since
providing labels for such a large data set can be time-consuming, we performed
a random sampling of 100 objects from the data set, which would then represent
the data set in our evaluation. In order for two monitoring problem samples to be
part of the same cluster, the following guidelines have been followed when labeling
the data (in this priority):

1. The samples must have the same event types as well as the same entity types
or applications impacted for all the events composing the problem.

2. The values for the duration of the problems should have the same magnitude.

3. They should occur relatively at the same time of day.

4. Based on the values for total duration and start hour, the priorities for
the revious two items can be switched.6

Figure 5.4a illustrates the dispersion of the randomly selected samples (red marks)
in the context of the entire data set. Projecting the extracted samples in two
dimensions separately, one could easily notice that there are some obvious super-
clusters. However we could not label the data based on the t-SNE visualization
only. This is why we used the data in its tabular form and ordered it based on
the event-related document, duration and time of day, as we can observe in figure
5.5. This way it was relatively easy to identify the objects belonging to the same
clusters.

Manual Labeling Results. The result of the labeling is illustrated in figure
5.4b. Visualized using t-SNE, the clusters have strongly irregular shapes, which
have a low likelihood of being identified using conventional main unsupervied tech-
niques. This supports the importance of using a custom distance metric.

Parameter Optimization and Model Selection. The most important aspect
to consider before feeding our data set to the clustering algorithm is the parameter
assignment. Having the ground truth simplifies this process by comparing it to
the outcomes yielded by the algorithm, for various values of the parameters and
choosing the best performing configuration. There are two parameters that need
to be optimized for the DBSCAN algorithm: min pts – the minimum number
of samples for a sample to be considered a core sample – and , or eps – the

6For example, if the two samples occurred 12 hours away from each other, the time of day may
be a deciding factor to assign the two samples to different clusters.

35



(a) Unlabelled samples (b) Labelled samples (”ground truth”)

Figure 5.4.: Monitoring problem distribution of the 100 randomly chosen samples

threshold under which the distance to other samples should be for those samples
to be considered aa core sample. The procedure is described below:

• eps: for the epsilon parameter to be optimized, we combined the grid search
approach usually employed in supervised model selection with external un-
supervised evaluation by computing various evaluation metrics based on the
ground truth versus the computed label assignments for each of the eps val-
ues considered in the gridsearch range. Then we selected the epsilon value
corresponding to the greatest obtained index.

• min pts: in the initial paper on DBSCAN, Sander et al. [41] suggest that
generally min pts should be chosen to be equal to half the number of dimen-
sions in the data set for general scenarios of cluster analysis. Our problem
nature however is not on the same line with this general guideline, as mon-
itoring problems can have very strict forms and thus, clusters of as little as
two problems can exist7. Although this can greatly simplify the model selec-
tion, for experimental completeness as well as objectivity reasons we chose
to include this parameter in the grid search tuning procedure.

Model Performance Comparison Methodology. After grid search was per-
formed based on the concepts presented in chapter 3 and mentioned previously,

7This means that the problems which would be identified as outliers (and thus labeled with -1),
would themselves be representing ”island” clusters.

36



Figure 5.5.: The figure depicts an intuitive view of a part of monitoring problem
samples from an arbitrary data set which were clustered manually.
Each row in the spreadsheet represents a monitoring problem.

the best-performing model was chosen. The following evaluation measures were
used for comparison:

1. Adjusted Rand index

2. Normalized Mutual Information index

3. Adjusted Mutual Information index.

All three measures are normalized, which means that their maximum values can
reach 18. This optimization process was repeated using two different clustering
configurations:

1. DBSCAN algorithm with distance matrix computed using the normalized
Wave Hedges function (equation 4.3).

2. DBSCAN algorithm with distance matrix computed using the normalized
and rectified Wave Hedges function (equation 4.4).

Thus, the grid search-based evaluation was performed six times: once for each of
the evaluation measure – clustering configuration combinations. Next, the results

8In this case there is a one-to-one similarity between the gound truth labeling and the evaluated
one.

37



were compared to the ground truth, labeling was performed for the entire data
set, and in the end, the best performing parameter values – compared to the value
obtained by performing the ”valley” method suggested generally by literature.

5.3.2. Experiments Statistics

The results of a grid search round can be consulted in figure 5.6. It is easy to notice
how the highest AMI index values were obtained for low min pts values9, which
validates our previously-mentioned hypothesis where we mentioned the existance
of very small clusters.

Figure 5.6.: The result of grid search for determining the eps (X axis) and min pts

(Y axis) parameters in the context of DBSCAN clustering using the
normalized and rectified Wave-Hedges metric, based on the adjusted
mutual information evaluation measure. The color scheme was chosen
to emphasize relative score changes for the parameter configurations:
while green indicates the highest (best) possible values for the evalu-
ation measure, red indicates very low values.

Figure 5.7 illustrates the labelings performed by the models using the two con-
figurations, based on the grid search parameter optimization. Comparing to the
ground truth (manual) labeling initially performed, clustering based on both dis-
tance measure customizations performs reasonably well, with a few exceptions.

9For the experiment illustrated in the figure, the value of min pts for which AMI has the highest
value, is 2.

38



They identify considerably more outliers than expected, however the most signifi-
cant clusters are generally correctly identified.

(a) ”Ground truth”
labeling

(b) Normalized
Wave-Hedges

(c) Normalized and rectified
Wave-Hedges

Figure 5.7.: The t-SNE visual representation of the data clustering performed by
DBSCAN using the customized version of the Wave-Hedges distance
metric, compared to the ground truth. Each monitoring problem is
reprensented by a colored mark; each cluster is represented by a dif-
ferent color.

By carefully inspecting the cluster labels for the clustered problems, we drew
the conclusion that the data set contains an uncertainty-inducing source. This
source is the start hour dimension, introduced in section 4.1. Taking the prob-
lems characterized by the SERVICE ERROR RATE INCREASED event as an
example, one could notice that they simply occur at different times throughout
the entire day. So in these situations, the question that we needed to answer was
how the clustering should have been performed. This leads us to the initial man-
ual labeling step or ground truth establishment, where the guideline was that they
should occur relatively at the same time of day (subsection 5.3.1). This guideline is
rather generic and relative, as it depends on the occurrence frequency of the prob-
lems in a certain time of day, the amount of time between occcurrences and so on.
Having this stated, the ultimate question was whether this classification criterion
made sense whatsoever. For answering this question, we needed to recall the busi-
ness goals of the project; more specifically the usage scenarios and the business
justification of grouping the application performance problems. In section 2.2 there
is a strong emphasis on the word similar (i.e. ”groups of similar problems”). This
does not completely answer our question, however by understanding the problem
similarity in the context of the problem occurrence time, we were able to answer
it: given the previous example, the concept of similarity was clearly dilluted by

39



the occurrence of the same type of problem at relatively arbitrary time during
the day so that it covered the entire 24-hour interval. Hence, based on its other
attributes (events, entities, duration), we concluded that there was no difference
between problems occurring at different times of day and that start hour should
not be a splitting criterion in these situations. This is clearly the representative
case of problems, especially in the context of global systems, where users around
the world use the applications monitored by Dynatrace. However, there are two
more situations that we needed to evaluate before drawing a conclusion on the
contribution of the start hour to the overall problem similarity:

1. Applications / services dedicated to users from specific time zones.
Some applications or services are only available for a certain region, contry or
time zone. Due to their load peaks, problems can emerge in these situations
in certain time intervals. Should this be a sufficient reason to have the
start hour as a cluster division criterion? This was only appropriate if
the problems occurring outside the (peak) usage time window were different
than the ones occurring during the normal usage hours. Although in practice
these situations are highly improbable, they are theoretically plausible.

2. Maintenance operations. Problems are likely to occur in situtations
like periodic redeployment, database backups or other application or ser-
vice maintenance-related operations. If these operations reoccur at the same
time of day, then the emerging problems are as a consequence also recurring.
However, their duration and event types entities are in theory constant over
time10, so according to our other clustering criteria, they should be part of
the same cluster even without taking the start hour into account. The out-
standing case is represented by similarly looking problems11, but that occur
outside of maintenance windows, due to other causes. While highly unlikely
in practice, this situation is theoretically possible. Hence, the clustering
model should be able to distinguish between the two situations and create
two separate clusters. But there is also a chance that unrelated but similar
problems12 occur very close to maintenance windows. So according to the
information that they convey, the clustering model would incorrectly assign
them to the same cluster. As we can see, for this corner case, the presence
of the start hour dimension brings both advantages and disadvantages.

As demonstrated above, although in most cases the start hour attribute does
not make any difference in terms of grouping the monitoring problems that occur

10The duration of recurring maintenance operations is generally constant over multiple runs, thus
the service outages or issues caused by them should also be in the same duration magnitude

11Similar in terms of duration, types of events and of entities.
12Having a different root cause than maintenance operations, but similar in terms of duration,

types of events and of entities.

40



in a round-the-clock manner, there are specific cases when they could be the key
towards correctly labeling the problems. Hence, we decided to reconstruct the
experiment using the same data set and the same extracted samples, but this time
re-labeling the data according to these conclusions. Hence, the third rule of the
Manual Labeling Methodology introduced in subsection 5.3.1 became:

Depending on the distribution of the problems with similar
duration and event and entity structures, the labels should
be assigned in the following manner:

• If the problems are distributed in a relatively uniform
manner throughout the 24 hours of day, the time of occur-
rence should not be a cluster splitting criterion. Hence,
they should belong to the same cluster;

• Otherwise, the furthest away13 the problems occur from
each other and the fewer similar problems there are in the
data set, the more this should weigh in for them being
assigned to separate clusters.

Relabeling of the data was performed, the second round taking the previously-
mentioned rule into account. Grid search was performed again for the newly
labeled data and using the same performance evaluation measures. As illustrated
by figure 5.8, the performance score distribution was considerably different than
for the previous iteration of the experiment. While the optimal min samples

parameter value remained the same, the eps value changed considerably by almost
an order of magnitude. The overall performance comparison is presented in the
subsequent sections.

5.3.3. Quantitative Evaluation

According to Aggarwal [1], evaluating cluster analysis based on an internal measure
function is not preferable, as it is biased toward certain clustering methods. For ex-
ample, the Silhouette coefficient is computed using the mean inter-cluster distance
and mean intra-cluster distance. Hence, it is adequate for evaluating labelings per-
formed by clustering algorithms which identify convex- or hyperellipsoid-shaped
clusters. Although we considered using such an internal evaluation measure at
first, the Silhouette coefficient has a considerably high risk of computing a score
which does not objectively assess the real performance of DBSCAN, especially due
to the high probability of identified clusters not satisfying the above-mentioned
shape constraint.

13Time-wise

41



Figure 5.8.: The results of grid search for determining the optimal eps (X axis) and
min samples (Y axis) in the context of DBSCAN clustering using the
normalized and rectified Wave-Hedges metric, based on the adjusted
mutual information evaluation measure, as a second iteration of the
process presented in figure 5.6.

As a consequence, the decision to externally evaluate the results was taken. We
first obtained a representation of the ground truth by manually labeling a subset
of representative samples from the entire data set. This enabled us to externally
evaluate the proposed clustering method in a less biased manner, by comparing
the labels for the ground truth with the ones obtained during grid search using
three external evaluation metrics. During the previous subsection we presented
how the experiment revealed a very fine, but crucial aspect for the success of the
clustering. Hence, the two evaluation iterations for the same set of data.

The evaluation results of the best performing models for these configurations are
compared in figure 5.9. By reiterating the experiment and re-tuning the model,
the clustering performance of the model was improved by around 38% more in
terms of accuracy.14

In addition to the pure clustering performance metrics, table 5.2 contains a
suite of metrics drawn from the two experiment iterations, and thus, offers a more
holistic view upon the clustering performance. While during the first iteration we

14We obtained the AMI score of 0.67 in the first iteration and 0.94 in the second iteration.

42



(a) Evaluation for iteration I
of the experiment

(b) Evaluation for iteration II
of the experiment

Figure 5.9.: Evaluation of the results obtained by the clustering algorithm using
the two modified versions of the Wave-Hedges distance metric, based
on the three evaluation measures.

noticed significant differences in terms of clustering performance between the two
evaluated configurations15 for all three measures that we used, the second iteration
of grid search yielded the same values for all three performance measures, the only
difference being the eps parameter value.

In terms of clusters and outliers (non-clustered samples), although during the
first iteration we obtained a model with exactly the same number of clusters as the
ground truth, the outlier count was almost three times larger than indicated by
the ground truth. Despite the incomplete identification of one cluster during the
second iteration, the results showed an almost perfect match in terms of outlier
count.

To evaluate the clustering similarity we used the three clustering similiarity
measures: ARI, NMI and AMI. While ARI differs from the other two by relying
on pair-counting, NMI differs from ARI and AMI by not accounting for purely
random cluster assignment. Since we want to ensure that randomness is taken
into accout, we conclude that our clustering scenario requires and adjusted measure
for evaluation. According to Romano et al. [39], AMI should be used in scenarios,
where the reference clustering is unbalanced, with potentially high number of small
clusters. as a result of our experiment, we obtained clusters of sizes from 2 to 61

15NWH and NRWH.

43



Table 5.2.: Statistics and performance metrics for the best performing configu-
ration of the parameter tuning procedure for both iterations of the
experiment.

Statistics Parameters Performance indices

Clusts. Noise eps min pts ARI NMI AMI

Iter.
I

NWH 11 28 0.0040 2 0.5057 0.7187 0.6052
NRWH 11 29 0.0026 2 0.5793 0.7709 0.6793

Gr. Truth 11 12

Iter.
II

NWH 7 10 0.0164 2 0.9881 0.9621 0.9409
NRWH 7 10 0.0119 2 0.9881 0.9621 0.9409

Gr. Truth 8 11

samples. Hence, we concluded that the AMI measure fits best for our problem
domain.

5.3.4. Qualitative Evaluation

In table 5.3 we present the computed clusters and their dominant features. Their
distribution is solid and according to the ground truth, most of the cases were cor-
rectly identified. The exception were the DATABASE CONNECTION FAILURE
problems, which should have been further divided into two clusters containing
2 and 3 problems each. The reason why the ground truth was established this
way was that two of the problems occurred in the morning, two in the afternoon,
and one at night (which was relatively close in time to the ones occurring in the
morning).

While the clustering accuracy was significantly higher in the second iteration,
it also became clear that the new model provided a greater flexibility for forming
clusters, due to the higher eps parameter value. In this case however, as we have
seen with the incorrectly-clustered probems, it might be slightly too flexible so it
might overfit certain data structures. Based on the business needs, this can be
regularized by providing a custom weight to the start hour parameter. Based on
the metric implementation provided in chapter 4, having a custom weight to select
features in the data set can be performed by parameterizing the constructor with
the optional attribute configuration key-value pairs (where the weight is specified
as the second parameter of the tuple value). This feature is exemplified in listing
1.

44



Table 5.3.: Cluster structure comparison of the best performing model with the
ground truth. The cluster sizes are expressed based on the dominant
features for each cluster.

Cluster
dominant feature

Cl. size
DBSCAN

Cl. size
Ground
truth

SERVICE ERROR RATE INCREASED SERVICE 61 61
SERVICE SLOWDOWN SERVICE 5 5
PROCESS NA HIGH LOSS RATE PGI 13 13
PGI OF SERVICE UNAVAILABLE ... PGI PGI 2 2
DATABASE CONNECTION FAILURE SERVICE 5 2 cls. [2,3]
RDS HIGH LATENCY RELATIONAL DB SERVICE 2 2
OSI SLOW DISK HOST 2 2

metric = snm.SelfNormalizingMetric(feature_distance_params={

'start_hour': ('hour_difference', 1.2)

})

distance_matrix = metric_transformer.fit_transform(data_set).

Listing 1: The interface to the SelfNormalizingMetric component: the construc-
tor allows the user to parameterize the distance computation and specify
custom weights for specified dimensions (i.e. for the hour difference

dimension).

As the performance problem grouping method was evaluated and the results
proved to fulfil the requirements of a productizable model, the next step was to
evaluate the model on an extended data set, which perfectly resembles the cus-
tomer data. We chose this data set to be the initially collected data from the
self-monitored Dynatrace environment. We need to point out that since the val-
idation suggests the performance of the NRWH metric is not superior than the
performance of the normalized Wave-Hedges metric, thus invalidating our initial
assumptions, we chose to continue our experiments with the lightweight NWH.
While this choice saves considerable computation time, it also adheres to the Oc-
cam’s Razor principle applied to KDD [14], which states that if two models perform
similarly in terms of performance / accuracy, the simplest of the two should be
chosen. Thus, we performed the clustering of performance problems based on the
NWH distance metric. The grouping of problems can be visualized in figure 5.10.
The clusters are easily identifiable, with the one very apparent cluster dominating

45



the entire picture: this is the same SERVICE ERROR RATE INCREASED SER-
VICE problem type that also dominated the downsampled data. This recurring
problem accounts for more than half of the entire problem space in the data set,
which means that it clearly affects the backend services and should be investi-
gated and fixed. The other important figures that characterize the result of the
problem grouping are the total number of clusters (63) and the amount of outliers
or unique problems (78), which accounts for less than 1% of the entire collected
problem domain.

Figure 5.10.: Coloring of the labels produced by the clustering of a data set pro-
jected using t-SNE. The data set contains 8638 monitoring prob-
lems from the Dynatrace production environment. Clusters are rep-
resented by similarly colored transparent marks, while outliers are
emphasized as opaque red marks.

46



5.3.5. Discussion

In this chapter we performed a data clustering experiment where the parameter
selection was performed atipically based on external evaluation measures. This ap-
proach was not only fruitful in terms of model and hypothesis evaluation, but also
in terms of perfecting our goal and model selection derived from the initial business
knowledge as well as an initial evaluation of the model. Through this approach, a
very significant improvement in terms of clustering accuracy was achieved.

Throughout the experiment, evaluating the type, value ranges and dynamics of
the attributes played a key role in the process of model inception and selection.
For example, the high dimensionality of the data set was one of the decisive factors
for choosing the DBSCAN clustering algorithm from the point of view of simplicity
and low computation time, while the volatile nature of the problem duration and
occurrence was the key aspect of confirming that this choice is the suitable one
for our problem, due to its capability of detecting convex-shaped clusters. Later
we discovered the fine, but important line where the occurrence time of problems
can, but do not have to further divide larger clusters. This was an important
finding not only for the improvement of overall clustering accuracy, but also for
simplifying the computation model of the distance between samples in particular
and for generally simplifying the clustering model. This also brings the benefit
of the model being able to link samples which recur at various times throughout
the 24-hour interval of a day into the same cluster, while separating problems
occurring at the same or close time intervals from others occurring at completely
opposite time.

Table 5.4.: Statistics and performance metrics obtained from clustering three dif-
ferent data sets.

Dataset
size

Dim.
count

Best AMI
100 samples

eps for
best AMI

Cluster
count

Outlier
count

Experiment 1 8638 61 0.9409 0.0164 63 79
Experiment 2 2516 51 0.9133 0.0180 63 68
Experiment 3 11199 46 0.8288 0.0162 78 82

As we mentioned earlier, we identified the clustering model as being production-
ready / accurate in the context of the 1-month data set which we clustered. But
one problem still standed. How could this model generalize for clustering perfor-
mance problem data sets containing a different data distribution, eventually from

47



completely different environments? To answer this question, further experiments
needed to be performed. As a consequence, we performed two more experiments
following the procedure from the second iteration of the first experiment, based
on completely different data sets extracted from the same environment and using
the same 1 month time window, but starting at different points in time. The
statistics for these experiments are presented in table 5.4. It is worth pointing
out that the best AMI score was obtained in the three different cases for an eps

value in a rather narrow interval: [0.0162 – 0.0180]. This reinforces our parameter
generalization assumption. The overall average AMI performance of 0.8943
was obtained for an average eps value of 0.0168. But in order for us to draw a
conclusion, we refer back to chapter 3 where we presented the general approach for
DBSCAN parameter selection procedure in an intuitive manner and we compare
the results obtained through the two methods.

First, the min pts parameter can be generally set to 2, since our hypothesis
about the minimum cluster sizes has been confirmed by the grid search procedure in
all three experiments, where all the performance measures unanimously identified 2
as the value yielding the best performing models. After setting this parameter, we
assessed the eps parameter resulted from the tuning procedure, in the context of
the intuitive ”elbow” method16. Figure 5.11 illustrates the relative value between
the experimentally-obtained and the intuitive eps values. The chart suggests that
the intuitive value lies approximately at half distance between the value obtained
in the first experiment iteration and the average of the three values obtained using
the NWH distance measure. This suggests that while the model from the first
iteration was too strict, the second approach could be rather coarse in identifying
clusters. On the other hand, one can notice a ”hump” in the curve exactly at
the level of the highest value, which indicates the trend change from ascending to
asymptotic.

In conclusion, the solution of the application performance management issue
clustering is rather a solution space, with no obvious optimum. The model can be
thus chosen depending on the value of the eps parameter of the DBSCAN algo-
rithm, with the suggested interval being bound by the intuitively obtained value
and the superior computed value. Based on the business scenario however, it is
recommended (and allowed) to have false positives rather than fals negatives. This
means that the model should be rather coarse and flexible in terms of clustering
than strict. Subsequently, this indicates that a value closer to our computed eps

value is recommended.

16We performed this method for the data set used in the first experiment

48



Figure 5.11.: k-dist chart showing the distances to the second nearest neighbors,
for samples, in ascending order. For a closer and more accurate look,
the chart was constrained to the portion of the samples containing the
distance inflexion curve elbow. The red dotted horizontal line shows
the value of eps obtained via grid search in the second experiment
iteration. The grey dotted horizontal line shows the value obtained
in the first experiment iteration. The green continuous line shows
the intuitively obtained eps value.

49



6. Related Work

So far we have seen the great advantages of DBSCAN: fast clustering, flexibility in
terms of cluster sizes and shapes as well as custom distance metric compatibility,
support for high dimensionality and outlier detection / isolation. But based on
our experiments implemented and documented in chapter 5, we discovered how
important but at the same time how volatile and difficult to approximate the eps

parameter value can be. In their recent article, Schubert et al. [42] approach the
eps parameter selection problem as well as other problems in a structured manner
where they also survey alternative algorithms that may alleviate these problems.

The eps selection problem. According to Schubert et al. [42], the higher the
dimentionality of the data becomes, the harder it is for the eps parameter to
be correctly estimated, due to the decline of contrast between distances. This
problem has been extensively studied by Beyer et al. [8], Houle et al. [25], and
Zimek, Schubert, and Kriegel [54]. As the authors suggest, while other algorithms
like OPTICS [4] or HDBSCAN [10] optimize the epsilon parameter automatically,
they still suffer from the curse of dimensionality when clustering high-dimensional
data sets. Returning to DBSCAN, as the authors later suggest, while eps should
be as small as possible, it also depends on:

• The distance metric

• The application domain and its contstraints.

Optimizations and critiques. In the same article, besides a refresh of the
original DBSCAN article [19] with new experimental evaluation and a set of rec-
ommendations, Schubert and the authors of DBSCAN also discuss a modified
version of DBSCAN proposed by Gan and Tao [22]. While acknowledging the
(new) contributions to DBSCAN and the initial inaccuracies indicated by Gan
and Tao, the initial authors deconstruct the article proposing the new approach
and demonstrate its fragility in terms of:

• Writing style (i.e. subjectivity)

• Incomplete experimentation

50



• Superficial analysis

• Over-generalization (i.e. they state that their approach should ”should re-
place DBSCAN on big data”).

Nevertheless, the newly proposed grid-based approach to optimizing the DBSCAN
algorithm can identify regions of high density and prune regions of low density as
noise in a very efficient manner and can process multiple points at once. However
it is also limited by two disadvantages:

1. The curse of dimensionality, which causes the number of possible grid
cells to grow exponentially with data dimensionality.

2. The dependence on Minkowski distances, which makes it impossible
to be used for problems such as the one presented in this thesis, where a
different distance metric is used.

In conclusion, the authors show that DBSCAN remains the clustering algorithm
of choice for most of the situations where high-dimensional data requires clustering
in a time-efficient manner and where noise should be detected and excluded from
clusters.

51



7. Conclusion

In this thesis, we proposed a methodology for clustering business-specific data,
where we covered aspects from business analysis and data collection to model se-
lection and evaluation. We performed a comprehensive experiment which followed
a logical line where we focused on model improvement while reiterating on the
business requirements.

Business analysis. Business requirements were identified and explained in ex-
tensive detail, based on formal and informal discussions with company stakehold-
ers1. Based on these requirements, besides understanding the terminology, scope
and structure of the internal data representation, two artifacts emerged:

1. The data model

2. The set of rules that describe how data2 should be grouped.

Data collection. Based on the identified data model, a configurable data col-
lection mechanism was implemented. This component is able to query time-bound
problems from the Dynatrace service endpoints.

Data preparation. Once the relevant data was collected, we used the bag of
words approach to transform the documents in numerical representation which is
supported by clustering algorithms. Based on the new data structure and feature
dispersion, we proposed two levels of customization for a previously-known distance
metric function3, which was used to compute the distance matrix that could be
later provided to the clustering algorithm.

Cluster analysis. In order to ensure the suitable algorithm is used for the type
of data suggested by this problem, a preliminary cluster analysis was performed,
where a range of four well known algorithms were compared. The experiment
showed a clear winner: the DBSCAN algorithm.

1Technical Program Managers and Software Architects from Dynatrace.
2In our case, data sets of application performance management problems.
3Wave-Hedges

52



Clustering model selection and evaluation. In an extensive, 2-iterations ex-
periment, we performed grid search for parameter search and optimization based
on external clustering performance measures which used the manual problem la-
beling as their ground truth. After the first iteration, we studied the dynamics
of data in the clustered set and further discussed and correlated business require-
ments with the clustering algorithm’s strengths and limiations. As a result of this
discussion, the initial labeling rule set was improved and the labeling was cor-
rected. Then, parameters search was repeated. As a consequence, the following
aspects were identified:

• The hypothesis of selecting 2 as the minimum cluster size4 was validated by
the clustering performance scores.

• The eps parameter was optimized.

• The second, more complex, customization of the Wave-Hedges distance met-
ric function was discarded after a second clustering round due to no longer
visible performance increase over the first, simpler and faster function cus-
tomization.

Finally, based on the discovered parameters and performance metrics, the selected
model was evaluated both quantitatively and qualitatively.

Readiness for use in production environment. After model validation, the
clustering of a large set of data was performed and visually inspected. Finally, the
parameter configuration was proposed and contrasted to the intuitively obtained
parameter5. While in theory lower values are better suited for an accurate cluster-
ing, business requirements can influence its choice by certain constraints. In our
case, the predilection for more flexibility and coarser-grained clusters supported the
obtained higher-than-theoretically-recommended eps value and the lower-than-
theoretically-recommended min pts value.

While it can be proven that the clustering model itself can have limitations,
such as generalization to data sets containing completely different problems feature
dynamics, it is a robust starting point which could be improved in many different
ways. We propose some of them in the next chapter.

4The min pts DBSCAN parameter.
5The ”elbow” method proposed by Ester et al. [19] for approximating the eps DBSCAN pa-

rameter

53



To conclude, the proposed clustering model for application performance manage-
ment issues is a reasonably good fit6 for deploying it into Dynatrace’s production
environment.

6With a proven AMI score of 0.89 – based on our experiments – presuming the minimum
acceptable score would be 0.70.

54



8. Future Work

We propose two directions for future development of the subject / problem ad-
dressed by this thesis:

1. Product engineering

2. Cluster analysis performance optimization research.

8.1. Product Engineering

In terms of product engineering developments, we firstly identify the imple-
mentation of the clustering mechanism presented in this thesis, so that it fulfills
the business scenarios described in chapter 2. Based on this implementation, we
further propose the following development directions:

• Introduction of a collaborative filtering model where the users are able to
assess / provide feedback if clusters are too coarse (they accept more moni-
toring problems than users expect) or too fine-grained (there are more small
clusters than expected and some could be consolidated). Based on this feed-
back, the model could adjust the eps parameter value.

• Parameterizing the eps parameter so that users can change it based on their
preference.

• Automatic naming of identified clusters based on predominant / similar fea-
tures characterizing the problems in the same cluster.

8.2. Cluster Analysis Performance Optimization

In terms of performance optimization research, we propose the following direc-
tions:

• Peform multiple experiments using problem samples from multiple (hetero-
geneous) environments and by applying the methodology proposed in this
thesis and further fine-tune the eps parameter to ensure a generic value can
be used for multiple data sets.

55



• Starting from the eps value proposed in this thesis and the proposed pro-
cedure to approximate it intuitively, we propose researching how its com-
putation could be automated. OPTICS or HDBSCAN are two clustering
algorithms which theoretically do not require the eps parameter, so they
could be considered as baselines.

• Model problems as graph structures and perform graph clustering on this
data. Each additional dimension (i.e. duration and start time of problems)
could be fragmented as event attributes / weights as part of the problem
graphs.

While we provided a few potential development directions, the area of unsu-
pervised learning is overwhelmingly vast and models can be infinitely improved.
Thus, since the thesis addresses a business problem, we also recommend that the
effort/cost-to-outcome ratio is kept in mind while attepting to improve an existing
methodology.

56



A. Code listings

Listing 2: The generic component used to compute the Wave-Hedges-based dis-
tance metric customizations.

import numpy as np

import pandas as pd

import math as m

class SelfNormalizingMetric:

def __init__(self, feature_distance_params=None):

"""

Initializes a new instance of the SelfNormalizingMetric class.

:param feature_distance_params: A dictionary of parameters in the form

feature_index: ( distance_method, weight )

The currently supported distance_method is only 'hour_difference'.

"""

self._feature_distance_params = feature_distance_params

if self._feature_distance_params is not None:

if len(self._feature_distance_params.keys()) < 1:

raise ValueError('The "feature_distance_params" should contain key-value pairs.')

for key in self._feature_distance_params.keys():

if self._feature_distance_params[key][0] not in [None, 'hour_difference'] or \

type(self._feature_distance_params[key][1]) != float:

raise ValueError('The "feature_distance_params" should contain key-value \

pairs of the form feature_index: (distance_method, weight)')

def fit_transform(self, X, normalization_only=False):

"""

Transforms the data set provided as argument by computing the

self-normalizing distances between the samples.

:param X: The data set in the form n_samples x n_features

:return: The distance matrix.

"""

if type(X) != pd.DataFrame:

raise ValueError("The input matrix needs to be of the pandas DataFrame format.")

if self._feature_distance_params is not None:

self._transform_indexes(X.columns.values)

X = X.values

if type(X) != np.ndarray:

X = np.array(X)

distance_matrix = np.zeros([X.shape[0], X.shape[0]])

for i in range(X.shape[0]):

for j in range(i + 1):

distance_matrix[i, j] = distance_matrix[j, i] \

= self._compute_distance(X[i], X[j], normalization_only)

return distance_matrix

57



@staticmethod

def _min_max(self, a, b):

return 1 if a == b == 0 else min(a, b) / max(a, b)

def _compute_distance(self, x, y, normalization_only):

if x.shape != y.shape:

raise ValueError('The samples do not have the same number of features.')

if normalization_only:

distances = [(1 - self._min_max(f_x, f_y)) for f_x, f_y in zip(x, y)]

else:

distances = [(1 - self._min_max(f_x, f_y)) /

(m.log10(m.fabs(f_x - f_y) + 1) + 1) for f_x, f_y in zip(x, y)]

if self._feature_distance_params is not None:

for key, params in self._feature_distance_params.items():

distances[key] = distances[key] * params[1] if params[0] is None \

else getattr(self, '_' + params[0])(x[key], y[key]) * params[1]

return np.sum(distances) / len(distances)

def _hour_difference(self, a, b):

if a < 0 or a >= 24 or b < 0 or b >= 24:

raise ValueError('Compared values are not hours of day:', a, b)

return min(abs(a - b), 24 - abs(a - b)) / 12.

def _transform_indexes(self, columns):

columns = list(columns)

keys = list(self._feature_distance_params.keys())

for key in keys:

self._feature_distance_params[columns.index(key)] = self._feature_distance_params.pop(key)

58



List of Figures

2.1. The PurePath and the PureStack. Source: Dynatrace [18]. . . . . . 6
2.2. The problems feed screen capture from the Dynatrace client. Source:

Dynatrace [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Event correlation graph in the context of a monitoring problem

example: graph nodes are represented by components showing ab-
normal behavior, emphasized by the presence of the exclamation
marks. Source: Dynatrace [17]. . . . . . . . . . . . . . . . . . . . . 8

3.1. K-distance graph: the ordered k-distances to each sample are rep-
resented by the blue line; the cutoff line is represented in red. . . . . 18

4.1. Data distribution for the monitoring problem data set: duration
distribution is illustrated separately. . . . . . . . . . . . . . . . . . . 24

5.1. Clustering time for 1010 monitoring problem samples . . . . . . . . 31
5.2. Clustering results. Colors represent cluster labels. Due to the re-

duced set in the color scheme, more than one cluster can be depicted
using the same color. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3. The sample data overview, visualized using 2-dimensional t-SNE . . 34
5.4. Monitoring problem distribution of the 100 randomly chosen samples 36
5.5. The figure depicts an intuitive view of a part of monitoring problem

samples from an arbitrary data set which were clustered manually.
Each row in the spreadsheet represents a monitoring problem. . . . 37

5.6. The result of grid search for determining the eps (X axis) and
min pts (Y axis) parameters in the context of DBSCAN cluster-
ing using the normalized and rectified Wave-Hedges metric, based
on the adjusted mutual information evaluation measure. The color
scheme was chosen to emphasize relative score changes for the pa-
rameter configurations: while green indicates the highest (best) pos-
sible values for the evaluation measure, red indicates very low values. 38

59



5.7. The t-SNE visual representation of the data clustering performed by
DBSCAN using the customized version of the Wave-Hedges distance
metric, compared to the ground truth. Each monitoring problem
is reprensented by a colored mark; each cluster is represented by a
different color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.8. The results of grid search for determining the optimal eps (X axis)
and min samples (Y axis) in the context of DBSCAN clustering
using the normalized and rectified Wave-Hedges metric, based on
the adjusted mutual information evaluation measure, as a second
iteration of the process presented in figure 5.6. . . . . . . . . . . . . 42

5.9. Evaluation of the results obtained by the clustering algorithm using
the two modified versions of the Wave-Hedges distance metric, based
on the three evaluation measures. . . . . . . . . . . . . . . . . . . . 43

5.10. Coloring of the labels produced by the clustering of a data set pro-
jected using t-SNE. The data set contains 8638 monitoring problems
from the Dynatrace production environment. Clusters are repre-
sented by similarly colored transparent marks, while outliers are
emphasized as opaque red marks. . . . . . . . . . . . . . . . . . . . 46

5.11. k-dist chart showing the distances to the second nearest neighbors,
for samples, in ascending order. For a closer and more accurate look,
the chart was constrained to the portion of the samples containing
the distance inflexion curve elbow. The red dotted horizontal line
shows the value of eps obtained via grid search in the second ex-
periment iteration. The grey dotted horizontal line shows the value
obtained in the first experiment iteration. The green continuous
line shows the intuitively obtained eps value. . . . . . . . . . . . . . 49

60



List of Tables

5.1. Clustering algorithm comparison based on the established criteria . 33
5.2. Statistics and performance metrics for the best performing configu-

ration of the parameter tuning procedure for both iterations of the
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3. Cluster structure comparison of the best performing model with the
ground truth. The cluster sizes are expressed based on the dominant
features for each cluster. . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4. Statistics and performance metrics obtained from clustering three
different data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

List of Code Snippets

1. The interface to the SelfNormalizingMetric component: the con-
structor allows the user to parameterize the distance computation
and specify custom weights for specified dimensions (i.e. for the
hour difference dimension). . . . . . . . . . . . . . . . . . . . . . 45

2. The generic component used to compute the Wave-Hedges-based
distance metric customizations. . . . . . . . . . . . . . . . . . . . . 57

61



Glossary

cloud computing A paradigm or practice which refers to the pooling of compute
resources exposed through the Internet, that can be used discretionarily and
for which the payment is done based on the amount of resources consumed.
This paradigm shifts the use of locally hosted resources to the cloud-hosted
resources.. 2

distance matrix A square symmetric matrix, whose elements, aij, represent the
distances between samples i and j, computed based on a distance function..
27, 34

Euclidean norm Also known as the length of vector x = (x1, ..., xn), the norm
is computed by the formula ‖X‖2 =

√
x21 + ...+ x2n. 13

grid search Technique used in machine learning for (hyper)parameter optimiza-
tion, also known under the name of parameter sweep, which performs a model
search based on parameters within specified ranges, guided by a performance
metric.. 36, 37, 38, 41, 42, 43, 48, 49, 53, 59, 60

62



Acronyms

AMI Adjusted mutual information. 38, 42, 43, 44, 47, 48, 54

API Application Programming Interface. 21, 22

APM Application performance monitoring / Management. 5, 11, 12, 28

ARI Adjusted Rand index. 43, 44

BIRCH Clustering algorithm: Balanced iterative reducing and clustering using
hierarchies. 15, 31, 32, 33

DBSCAN Clustering algorithm: Density-based spatial clustering of applications
with noise. 15, 16, 17, 19, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 47,
48, 50, 51, 52, 53, 59, 60

HDBSCAN Clustering algorithm: Hierarchical density-based spatial clustering
of applications with noise. 50, 56

JSON JavaScript Object Notation. 22

KDD Knowledge discovery in data. 12, 45

NMI Normalized mutual information. 43, 44

NRWH Clustering using the normalized and rectified Wave-Hedges distance met-
ric. 26, 27, 43, 44, 45

NWH Clustering using the normalized Wave-Hedges distance metric. 26, 27, 43,
44, 45, 48

OPTICS Clustering algorithm: Ordering points to identify the clustering struc-
ture. 50, 56

R&D Research and development. 5

63



SaaS Software-as-a-Service. 1

SLA Service-level agreement. 11

t-SNE t-Distributed Stochastic Neighbor Embedding. 21

TF-IDF Term frequency – inverse document frequency. 13

VSM Vector space model. 13

64



Bibliography

[1] Charu C. Aggarwal. Data Mining: The Textbook. 2015, p. 734. isbn: 9783319141411.
doi: 10.1007/978-3-319-14142-8. arXiv: arXiv:1011.1669v3.

[2] Kabir Ahmed et al. “Similarity Analysis of Industrial Alarm Flood Data”.
In: IEEE Transactions on Automation Science and Engineering 10.2 (Apr.
2013), pp. 452–457. issn: 1545-5955. doi: 10.1109/TASE.2012.2230627.
url: http://ieeexplore.ieee.org/document/6419854/.

[3] Ernst Ambichl et al. Method And System For Real-Time Causality And Root
Cause Determination Of Transaction And Infrastructure Related Events Pro-
vided By Multiple, Heterogeneous Agents. Sept. 2016. url: https://patents.
google.com/patent/US20170075749A1/en (visited on 07/01/2018).

[4] Mihael Ankerst et al. “OPTICS: Ordering points to identify the clustering
structure”. In: ACM Sigmod Record (1999), pp. 49–60. issn: 01635808. doi:
10.1145/304182.304187. arXiv: 10.1.1.71.1980. url: http://dl.acm.
org/citation.cfm?id=304187.

[5] Jean Babaud et al. “Uniqueness of the Gaussian Kernel for Scale-Space Fil-
tering”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-8.1 (Jan. 1986), pp. 26–33. issn: 0162-8828. doi: 10.1109/TPAMI.
1986.4767749. url: http://ieeexplore.ieee.org/document/4767749/.

[6] John Bellamy et al. Elements of Information Theory. Wiley, 1991. isbn:
0-471-20061-1. url: http://www.academia.edu/download/31823797/

information%7B%5C_%7Dtheory.pdf.

[7] Richard Bellman. Dynamic programming. Dover Publications, 2003, p. 340.
isbn: 0486428095.

[8] Kevin Beyer et al. “When Is “Nearest Neighbor” Meaningful?” In: 1999,
pp. 217–235. isbn: 978-3-540-65452-0. doi: 10.1007/3-540-49257-7_15.
arXiv: 9780201398298. url: https://rd.springer.com/content/pdf/
10.1007%7B%5C%%7D2F3- 540- 49257- 7%7B%5C_%7D15.pdf%20http:

//link.springer.com/10.1007/3-540-49257-7%7B%5C_%7D15.

65

https://doi.org/10.1007/978-3-319-14142-8
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1109/TASE.2012.2230627
http://ieeexplore.ieee.org/document/6419854/
https://patents.google.com/patent/US20170075749A1/en
https://patents.google.com/patent/US20170075749A1/en
https://doi.org/10.1145/304182.304187
https://arxiv.org/abs/10.1.1.71.1980
http://dl.acm.org/citation.cfm?id=304187
http://dl.acm.org/citation.cfm?id=304187
https://doi.org/10.1109/TPAMI.1986.4767749
https://doi.org/10.1109/TPAMI.1986.4767749
http://ieeexplore.ieee.org/document/4767749/
http://www.academia.edu/download/31823797/information%7B%5C_%7Dtheory.pdf
http://www.academia.edu/download/31823797/information%7B%5C_%7Dtheory.pdf
https://doi.org/10.1007/3-540-49257-7_15
https://arxiv.org/abs/9780201398298
https://rd.springer.com/content/pdf/10.1007%7B%5C%%7D2F3-540-49257-7%7B%5C_%7D15.pdf%20http://link.springer.com/10.1007/3-540-49257-7%7B%5C_%7D15
https://rd.springer.com/content/pdf/10.1007%7B%5C%%7D2F3-540-49257-7%7B%5C_%7D15.pdf%20http://link.springer.com/10.1007/3-540-49257-7%7B%5C_%7D15
https://rd.springer.com/content/pdf/10.1007%7B%5C%%7D2F3-540-49257-7%7B%5C_%7D15.pdf%20http://link.springer.com/10.1007/3-540-49257-7%7B%5C_%7D15


[9] T. Calinski and J. Harabasz. “A dendrite method for cluster analysis”. In:
Communications in Statistics - Theory and Methods 3.1 (1974), pp. 1–27.
doi: 10.1080/03610927408827101. url: http://www.tandfonline.com/
doi/abs/10.1080/03610927408827101.

[10] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. “Density-
Based Clustering Based on Hierarchical Density Estimates”. In: Advances in
Knowledge Discovery and Data Mining (2013), pp. 160–172. issn: 16113349,
03029743. doi: 10.1007/978-3-642-37456-2_14. arXiv: 1602.03730. url:
http://link.springer.com/10.1007/978-3-642-37456-2%7B%5C_%7D14.

[11] Sung-hyuk Cha. “Comprehensive Survey on Distance / Similarity Measures
between Probability Density Functions”. In: International Journal of Math-
ematical Models and Methods in Applied Sciences 1.4 (2007), pp. 300–307.
issn: 14337347. doi: 10 . 1007 / s00167 - 009 - 0884 - z. url: http : / /

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.8446%

7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf.

[12] Soumen Chakrabarti et al. “Data Mining Curriculum: A Proposal (Version
1.0)”. In: ACM SIGKDD (2006). url: http://www.kdd.org/exploration%
7B%5C_%7Dfiles/CURMay06.pdf.

[13] Yue Cheng, Iman Izadi, and Tongwen Chen. “Pattern matching of alarm
flood sequences by a modified Smith–Waterman algorithm”. In: Chemical
Engineering Research and Design 91.6 (June 2013), pp. 1085–1094. issn:
0263-8762. doi: 10.1016/J.CHERD.2012.11.001. url: https://www.
sciencedirect.com/science/article/pii/S0263876212004261.

[14] Pedro Domingos. “The Role of Occam’s Razor in Knowledge Discovery”. In:
Data Mining and Knowledge Discovery 3 (1999), pp. 409–425. url: https:
//link.springer.com/content/pdf/10.1023/A:1009868929893.pdf.

[15] David Dubin. “The Most Influential Paper Gerard Salton Never Wrote”.
In: LIBRARY TRENDS 52.4 (2004), pp. 748–764. url: https://www.

ideals.illinois.edu/bitstream/handle/2142/1697/Dubin748764.

pdf?sequence=2.

[16] Dynatrace. Application performance management (APM): Monitor and man-
age the performance and availability of software applications to optimize cus-
tomer experience. url: https : / / www . dynatrace . com / capabilities /

application-performance-management/ (visited on 06/16/2018).

[17] Dynatrace. Dynatrace Official Documentation - Problem detection & analy-
sis. url: https://www.dynatrace.com/support/help/problem-detection-
and-analysis/ (visited on 07/09/2018).

66

https://doi.org/10.1080/03610927408827101
http://www.tandfonline.com/doi/abs/10.1080/03610927408827101
http://www.tandfonline.com/doi/abs/10.1080/03610927408827101
https://doi.org/10.1007/978-3-642-37456-2_14
https://arxiv.org/abs/1602.03730
http://link.springer.com/10.1007/978-3-642-37456-2%7B%5C_%7D14
https://doi.org/10.1007/s00167-009-0884-z
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.8446%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.8446%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.8446%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://www.kdd.org/exploration%7B%5C_%7Dfiles/CURMay06.pdf
http://www.kdd.org/exploration%7B%5C_%7Dfiles/CURMay06.pdf
https://doi.org/10.1016/J.CHERD.2012.11.001
https://www.sciencedirect.com/science/article/pii/S0263876212004261
https://www.sciencedirect.com/science/article/pii/S0263876212004261
https://link.springer.com/content/pdf/10.1023/A:1009868929893.pdf
https://link.springer.com/content/pdf/10.1023/A:1009868929893.pdf
https://www.ideals.illinois.edu/bitstream/handle/2142/1697/Dubin748764.pdf?sequence=2
https://www.ideals.illinois.edu/bitstream/handle/2142/1697/Dubin748764.pdf?sequence=2
https://www.ideals.illinois.edu/bitstream/handle/2142/1697/Dubin748764.pdf?sequence=2
https://www.dynatrace.com/capabilities/application-performance-management/
https://www.dynatrace.com/capabilities/application-performance-management/
https://www.dynatrace.com/support/help/problem-detection-and-analysis/
https://www.dynatrace.com/support/help/problem-detection-and-analysis/


[18] Dynatrace. PurePath Explained. url: https://community.dynatrace.

com/community/display/DOCDT65/PurePath+Explained (visited on 06/16/2018).

[19] Martin Ester et al. “A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise”. In: (1996). url: https://www.aaai.
org/Papers/KDD/1996/KDD96-037.pdf.

[20] Vladimir Estivill-Castro. “Why so many clustering algorithms — A Position
Paper”. In: (). url: http://web.cs.iastate.edu/%7B~%7Dhonavar/

clustering-survey2.pdf.

[21] Brendan J Frey and Delbert Dueck. “Clustering by Passing Messages Be-
tween Data Points”. In: Science 315 (2007).

[22] Junhao Gan and Yufei Tao. “DBSCAN Revisited: Mis-Claim, Un-Fixability,
and Approximation”. In: Sigmod. New York, New York, USA: ACM Press,
2015, pp. 519–530. isbn: 9781450327589. doi: 10.1145/2723372.2737792.
url: http://dl.acm.org/citation.cfm?doid=2723372.2737792.

[23] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and
Techniques - Third Edition. Elsevier Science, 2011, p. 744. isbn: 0123814790.

[24] Sepp Hochreiter. Machine Learning: Unsupervised Techniques - Lecture Notes.
Linz. url: http://www.bioinf.jku.at/teaching/current/ss%7B%5C_
%7Dvl%7B%5C_%7Dmlut/ (visited on 07/02/2018).

[25] Michael E. Houle et al. “Can shared-neighbor distances defeat the curse of
dimensionality?” In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
6187 LNCS (2010), pp. 482–500. issn: 03029743. doi: 10.1007/978-3-642-
13818-8_34. url: http://www.dbs.ifi.lmu.de.

[26] Lawrence Hubert and Phipps Arabie. “Comparing partitions”. In: Journal of
Classification 2.1 (Dec. 1985), pp. 193–218. issn: 0176-4268. doi: 10.1007/
BF01908075. url: http://link.springer.com/10.1007/BF01908075.

[27] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing In
Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[28] Plotly Technologies Inc. Collaborative data science. 2015. url: https://
plot.ly (visited on 07/02/2018).

[29] Paul Jaccard. “Étude comparative de la distribution florale dans une portion
des Alpes et des Jura”. In: Bulletin del la Société Vaudoise des Sciences
Naturelles 37 (1901), pp. 547–579.

67

https://community.dynatrace.com/community/display/DOCDT65/PurePath+Explained
https://community.dynatrace.com/community/display/DOCDT65/PurePath+Explained
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
http://web.cs.iastate.edu/%7B~%7Dhonavar/clustering-survey2.pdf
http://web.cs.iastate.edu/%7B~%7Dhonavar/clustering-survey2.pdf
https://doi.org/10.1145/2723372.2737792
http://dl.acm.org/citation.cfm?doid=2723372.2737792
http://www.bioinf.jku.at/teaching/current/ss%7B%5C_%7Dvl%7B%5C_%7Dmlut/
http://www.bioinf.jku.at/teaching/current/ss%7B%5C_%7Dvl%7B%5C_%7Dmlut/
https://doi.org/10.1007/978-3-642-13818-8_34
https://doi.org/10.1007/978-3-642-13818-8_34
http://www.dbs.ifi.lmu.de
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
http://link.springer.com/10.1007/BF01908075
https://doi.org/10.1109/MCSE.2007.55
https://plot.ly
https://plot.ly


[30] R P Jagadeesh et al. “Context Aware Trace Clustering: Towards Improving
Process Mining Results”. In: Proceedings of the 2009 SIAM International
Conference on Data Mining (Apr. 2009), pp. 401–412. doi: 10.1137/1.
9781611972795.35. url: http://epubs.siam.org/doi/abs/10.1137/1.
9781611972795.35%20https://epubs.siam.org/doi/pdf/10.1137/1.

9781611972795.35.

[31] Eamonn Keogh and Abdullah Mueen. “Curse of Dimensionality”. In: Ency-
clopedia of Machine Learning and Data Mining. Boston, MA: Springer US,
2017, pp. 314–315. doi: 10.1007/978-1-4899-7687-1_192. url: http:
//link.springer.com/10.1007/978-1-4899-7687-1%7B%5C_%7D192.

[32] James Lewis and Martin Fowler. Microservices - a definition of this new
architectural term. 2014. url: https://www.martinfowler.com/articles/
microservices.html (visited on 07/01/2018).

[33] Leslie C. Morey and Alan Agresti. “The Measurement of Classification Agree-
ment: An Adjustment to the Rand Statistic for Chance Agreement”. In: Ed-
ucational and Psychological Measurement 44.1 (Mar. 1984), pp. 33–37. issn:
0013-1644. doi: 10.1177/0013164484441003. url: http://journals.

sagepub.com/doi/10.1177/0013164484441003.

[34] Karl Pearson. “On the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can be
reasonably supposed to have arisen from random sampling”. In: The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50.302
(July 1900), pp. 157–175. doi: 10.1080/14786440009463897. url: https:
//www.tandfonline.com/doi/full/10.1080/14786440009463897.

[35] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[36] Fernando Pérez and Brian E. Granger. “IPython: a System for Interactive
Scientific Computing”. In: Computing in Science and Engineering 9.3 (May
2007), pp. 21–29. issn: 1521-9615. doi: 10 . 1109 / MCSE . 2007 . 53. url:
http://ipython.org (visited on 07/02/2018).

[37] Andres Quiroz et al. “Robust clustering analysis for the management of self-
monitoring distributed systems”. In: Cluster Computing 12.1 (Mar. 2009),
pp. 73–85. issn: 1386-7857. doi: 10.1007/s10586-008-0068-5. url: http:
//link.springer.com/10.1007/s10586-008-0068-5.

[38] Vicent Rodrigo et al. “Causal analysis for alarm flood reduction”. In: IFAC-
PapersOnLine 49.7 (Jan. 2016), pp. 723–728. issn: 2405-8963. doi: 10 .

1016/J.IFACOL.2016.07.269. url: https://www.sciencedirect.com/
science/article/pii/S2405896316304761.

68

https://doi.org/10.1137/1.9781611972795.35
https://doi.org/10.1137/1.9781611972795.35
http://epubs.siam.org/doi/abs/10.1137/1.9781611972795.35%20https://epubs.siam.org/doi/pdf/10.1137/1.9781611972795.35
http://epubs.siam.org/doi/abs/10.1137/1.9781611972795.35%20https://epubs.siam.org/doi/pdf/10.1137/1.9781611972795.35
http://epubs.siam.org/doi/abs/10.1137/1.9781611972795.35%20https://epubs.siam.org/doi/pdf/10.1137/1.9781611972795.35
https://doi.org/10.1007/978-1-4899-7687-1_192
http://link.springer.com/10.1007/978-1-4899-7687-1%7B%5C_%7D192
http://link.springer.com/10.1007/978-1-4899-7687-1%7B%5C_%7D192
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://doi.org/10.1177/0013164484441003
http://journals.sagepub.com/doi/10.1177/0013164484441003
http://journals.sagepub.com/doi/10.1177/0013164484441003
https://doi.org/10.1080/14786440009463897
https://www.tandfonline.com/doi/full/10.1080/14786440009463897
https://www.tandfonline.com/doi/full/10.1080/14786440009463897
https://doi.org/10.1109/MCSE.2007.53
http://ipython.org
https://doi.org/10.1007/s10586-008-0068-5
http://link.springer.com/10.1007/s10586-008-0068-5
http://link.springer.com/10.1007/s10586-008-0068-5
https://doi.org/10.1016/J.IFACOL.2016.07.269
https://doi.org/10.1016/J.IFACOL.2016.07.269
https://www.sciencedirect.com/science/article/pii/S2405896316304761
https://www.sciencedirect.com/science/article/pii/S2405896316304761


[39] Simone Romano et al. “Adjusting for Chance Clustering Comparison Mea-
sures”. In: (2015). issn: 15337928. arXiv: 1512.01286. url: http://arxiv.
org/abs/1512.01286.

[40] Peter J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis”. In: Journal of Computational and Applied
Mathematics 20 (Nov. 1987), pp. 53–65. issn: 0377-0427. doi: 10.1016/
0377-0427(87)90125-7. url: https://www.sciencedirect.com/science/
article/pii/0377042787901257?via%7B%5C%%7D3Dihub.

[41] Jörg Sander et al. “Density-based clustering in spatial databases: The al-
gorithm GDBSCAN and its applications”. In: Data Mining and Knowl-
edge Discovery 2.2 (1998), pp. 169–194. issn: 13845810. doi: 10.1023/A:
1009745219419. arXiv: 10.1.1.71.1980. url: http://link.springer.
com/10.1023/A:1009745219419.

[42] Erich Schubert et al. “DBSCAN Revisited, Revisited: Why and How You
Should (Still) Use DBSCAN”. In: ACM Transactions on Database Systems
42.3 (2017), pp. 1–21. issn: 03625915. doi: 10.1145/3068335. url: http:
//dl.acm.org/citation.cfm?doid=3129336.3068335.

[43] Scikit-learn. t-SNE API Reference. url: http : / / scikit - learn . org /

stable/modules/generated/sklearn.manifold.TSNE.html (visited on
07/02/2018).

[44] Service-Oriented Architecture. url: http://www.opengroup.org/soa/

source-book/soa/index.htm (visited on 07/01/2018).

[45] R. Sibson. “SLINK: An optimally efficient algorithm for the single-link clus-
ter method”. In: The Computer Journal 16.1 (Jan. 1973), pp. 30–34. issn:
0010-4620. doi: 10.1093/comjnl/16.1.30. url: https://academic.oup.
com/comjnl/article-lookup/doi/10.1093/comjnl/16.1.30.

[46] Minseok Song, Christian W. Günther, and Wil M. P. van der Aalst. “Trace
Clustering in Process Mining”. In: Springer, Berlin, Heidelberg, 2009, pp. 109–
120. doi: 10.1007/978-3-642-00328-8_11. url: http://link.springer.
com/10.1007/978- 3- 642- 00328- 8%7B%5C_%7D11%20http://www.

processmining.org/%7B%5C_%7Dmedia/publications/song2008a.pdf.

[47] R. Vaarandi. “A data clustering algorithm for mining patterns from event
logs”. In: Proceedings of the 3rd IEEE Workshop on IP Operations & Man-
agement (IPOM 2003) (IEEE Cat. No.03EX764) (2003), pp. 119–126. issn:
03029743. doi: 10.1109/IPOM.2003.1251233. arXiv: 1008.3701. url:
http://ieeexplore.ieee.org/document/1251233/.

69

https://arxiv.org/abs/1512.01286
http://arxiv.org/abs/1512.01286
http://arxiv.org/abs/1512.01286
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257?via%7B%5C%%7D3Dihub
https://www.sciencedirect.com/science/article/pii/0377042787901257?via%7B%5C%%7D3Dihub
https://doi.org/10.1023/A:1009745219419
https://doi.org/10.1023/A:1009745219419
https://arxiv.org/abs/10.1.1.71.1980
http://link.springer.com/10.1023/A:1009745219419
http://link.springer.com/10.1023/A:1009745219419
https://doi.org/10.1145/3068335
http://dl.acm.org/citation.cfm?doid=3129336.3068335
http://dl.acm.org/citation.cfm?doid=3129336.3068335
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
http://www.opengroup.org/soa/source-book/soa/index.htm
http://www.opengroup.org/soa/source-book/soa/index.htm
https://doi.org/10.1093/comjnl/16.1.30
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/16.1.30
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/16.1.30
https://doi.org/10.1007/978-3-642-00328-8_11
http://link.springer.com/10.1007/978-3-642-00328-8%7B%5C_%7D11%20http://www.processmining.org/%7B%5C_%7Dmedia/publications/song2008a.pdf
http://link.springer.com/10.1007/978-3-642-00328-8%7B%5C_%7D11%20http://www.processmining.org/%7B%5C_%7Dmedia/publications/song2008a.pdf
http://link.springer.com/10.1007/978-3-642-00328-8%7B%5C_%7D11%20http://www.processmining.org/%7B%5C_%7Dmedia/publications/song2008a.pdf
https://doi.org/10.1109/IPOM.2003.1251233
https://arxiv.org/abs/1008.3701
http://ieeexplore.ieee.org/document/1251233/


[48] Laurens Van Der Maaten and Geoffrey Hinton. “Visualizing Data using
t-SNE”. In: Journal of Machine Learning Research 9 (2008), pp. 2579–
2605. url: http://www.jmlr.org/papers/volume9/vandermaaten08a/
vandermaaten08a.pdf.

[49] Tao Wang et al. “Self-adaptive cloud monitoring with online anomaly de-
tection”. In: Future Generation Computer Systems 80 (Mar. 2018), pp. 89–
101. issn: 0167-739X. doi: 10.1016/J.FUTURE.2017.09.067. url: https:
//www.sciencedirect.com/science/article/pii/S0167739X1730376X.

[50] David H Wolpert and William G Macready. “No Free Lunch Theorems for
Optimization”. In: IEEE TRANSACTIONS ON EVOLUTIONARY COM-
PUTATION 1.1 (1997). url: https://ti.arc.nasa.gov/m/profile/dhw/
papers/78.pdf.

[51] Nguyen Xuan Vinh, Unsweduau Julien Epps, and James Bailey. “Informa-
tion Theoretic Measures for Clusterings Comparison: Variants, Properties,
Normalization and Correction for Chance”. In: Journal of Machine Learning
Research 11 (2010), pp. 2837–2854. url: http://jmlr.csail.mit.edu/
papers/volume11/vinh10a/vinh10a.pdf.

[52] F. Yang et al. “Improved correlation analysis and visualization of indus-
trial alarm data”. In: ISA Transactions 51.4 (July 2012), pp. 499–506. issn:
0019-0578. doi: 10.1016/J.ISATRA.2012.03.005. url: https://www.
sciencedirect.com/science/article/pii/S0019057812000341.

[53] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. “BIRCH: An Effi-
cient Data Clustering Databases Method for Very Large”. In: Proceedings of
the 1996 ACM SIGMOD international conference on Management of data -
SIGMOD ’96 1 (1996), pp. 103–114. issn: 01635808. doi: 10.1145/233269.
233324. url: http://portal.acm.org/citation.cfm?doid=233269.
233324.

[54] Arthur Zimek, Erich Schubert, and Hans-peter Kriegel. “REVIEW A Survey
on Unsupervised Outlier Detection in High-Dimensional Numerical Data”.
In: (2012). doi: 10.1002/sam.

70

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://doi.org/10.1016/J.FUTURE.2017.09.067
https://www.sciencedirect.com/science/article/pii/S0167739X1730376X
https://www.sciencedirect.com/science/article/pii/S0167739X1730376X
https://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
https://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
https://doi.org/10.1016/J.ISATRA.2012.03.005
https://www.sciencedirect.com/science/article/pii/S0019057812000341
https://www.sciencedirect.com/science/article/pii/S0019057812000341
https://doi.org/10.1145/233269.233324
https://doi.org/10.1145/233269.233324
http://portal.acm.org/citation.cfm?doid=233269.233324
http://portal.acm.org/citation.cfm?doid=233269.233324
https://doi.org/10.1002/sam


Vlad I Precup 
 

 

 

Mehedinti 37/30 

400675 Cluj-Napoca, Romania 

 

Phone: +40 743 013 868 

Personal Email: vlad.precup@live.com  

 

Work Experience 

Feb. 2018 – 

Present 

Dynatrace – Master Project Collaborator – Linz 

Research and implementation of an end-to-end cluster analysis methodology it in the context 

of Application Performance Monitoring. 

May 2017 – 

Aug. 2017 

Ve Interactive – Technical Lead – Cluj-Napoca 

Responsible with driving the technical strategy of the merchant integration solutions. Among 

the most notable contributions: 

- Migration of the integration back-end services from IaaS to PaaS and streamlining the 

monitoring, diagnostics and telemetry story using the Azure Cloud Services. 

- Driving the integration with Google services end to end, from architecture, through the 

implementation and testing, to release, in a team of 7.  

- Closely managing and mentoring two SCRUM team members. 

Oct. 2016 – 

April 2017 

Ve Interactive – Senior Software Engineer – Cluj-Napoca 

Member of the merchant integration / licensing team with technical leadership valence. 

- Responsibilities: Technical direction of the integration of the product into external systems. 

- Technologies: VSO, Git, VS, C#, Azure Services, Octopus. 

Dec. 2014 – 

Aug. 2016 

Microsoft – Software Engineer II – Copenhagen 

Member of the Core Marketing team within the Dynamics CRM – Marketing organization. 

- Responsibilities: Scrum Master and backlog owner (2016); Design, development and test of a 

high-volume ingestion engine for the next-gen Marketing services (2016); Development and 

test of a cross-platform controls suite for the next-gen CRM client (2015); Perf and resilience 

of the Marketing services (2014). 

- Technologies: TFS, Git, VS, C#, SQL, TypeScript, JavaScript, CSS3, HTML5, Microsoft Azure 

Sep. 2014 –  

Nov. 2014 

Microsoft – Software Engineer II – Copenhagen 

Member of the Server and Tools engineering team for the Microsoft Dynamics NAV ERP. 

- Responsibilities: Development and testing of the single sign-on mechanism, federated user 

authentication, integration with Microsoft Azure AD across the client applications (Web, 

Windows and tablet), integration with SharePoint Online, integration with Microsoft Office 

products as well as performance testing. 

- Technologies: TFS, VS, C#, WIF, PowerShell, JavaScript, Script#, Microsoft Azure AD 

Feb. 2013 –  

Aug. 2014 

Microsoft – Software Engineer – Copenhagen 

Member of the Office 365 Integration team for the Dynamics NAV ERP. 

- Responsibilities: implementation and design of the federated user authentication, automated 

configuration scripts, integration into the SharePoint Online portal, OData concurrency. 

- Technologies: TFS, VS, C#, WIF, PowerShell, Microsoft Azure AD, OData 

Aug. 2011 –  

Jan. 2013 

Microsoft – Software Development Engineer in Test – Copenhagen 

Member of the Web Client team for the Dynamics NAV ERP. 

- Responsibilities: Designed and implemented a Request-Response test framework whose main 

purpose was to provide long-time support for a part of the regression test automation for the 

web client features. Additional responsibilities included user authentication testing and 

automation, deployment testing. 

Jul. 2010 –  

Oct. 2010  

Fortech S.R.L. – 4 Month internship – Cluj-Napoca 

Outsourcing Team Project: The migration of a large ERP software from WPF to Silverlight.   



Education and qualifications  

2017 – Present Johannes Kepler Universität (Linz, Austria) 

MSc in Universal Computing and Business with strong focus on 

Machine Learning and Artificial Intelligence 

Graduation:  

Estimated August 2018 

2016 – Present Babeș-Bolyai University (Cluj-Napoca, Romania) 

MSc in Distributed Systems 

1st year Average: 10.00 

2007 – 2011   Technical University of Cluj-Napoca (Romania) Admission: 9.56 / 10.00  

Graduation: 9.17 

Bachelor Thesis: 10.00 
 Faculty of Automation and Computer Science   

BSc in Computer Science - English Medium, 4 years of studies  

2003 – 2007  Emil Racoviță High-School (Cluj-Napoca, Romania)  

Mathematics and Computer Science Profile  

Graduation: 9.51  

Baccalaureate: 9.67   

2007  Ministry of Education, Romania     

Certificate in Computer Use and Programming (C/C++ language)  

  

Mark: 10.00  

Voluntary Activities 

2010 – 2011 Team Lead of the Microsoft Student Partners team, TUCN 

2009 – 2010 Marketing Coordinator of the Microsoft Student Partners team, TUCN 

2008 – 2011 Member of the Microsoft Student Partners team, TUCN  

2008 – 2011 Member of the Representatives Council, Faculty of Automation and Computer Science, TUCN 

Other Projects/Presentations/Workshops  

Jul. 2015 Microsoft OneWeek Hackathon – ILostYouFound – 1st Prize – Copenhagen 

Member of a team of 4 – prototyped a collaborative cross-platform mobile app for automatically 

matching lost items and reported found items based on several factors. 

Technologies: Xamarin, C#, iOS, WP8, Maps, Project Oxford 

Nov. 2014 Conference: NAV TechDays – Antwerp 

Advanced session: Office 365 Integration – Focus on Simplicity 

Held an in-depth technical demo about the simplified integration story of the Dynamics NAV ERP with 

the Office and Office 365 Services. 

Oct. 2010 –  

May 2011 

ImagineCup - Software Development Competition: AccessiGaze Studio – Cluj-Napoca 

Participated in a team of four with an application platform based on Alternative Computer Human 

Interaction – AccessiGaze Studio. This was also my Bachelor’s thesis.  

- Outcome: 1st place University-wide, participation at the national round 

- Responsibilities: Team Lead, Developer 

- Technologies: WPF, OpenCV, Microsoft Speech API  

Dec. 2010  Microsoft Student Partners-TUCN - Silverlight Workshop  
Delivered a four-hour workshop which focused on the distributed side of Silverlight applications and 

Silverlight browser integration.  

Responsibility: Coordinator, Trainer  

May 2010  Microsoft Student Partners-TUCN - Academic Tour  

Organized an event for evangelizing the latest Microsoft technologies and their strong features to the 

audience - from high-school and university students to company employees.   

Responsibility: Coordinator, Speaker (on Visual Studio 2010 and Office 2010)  

Nov. 2010,  

Nov. 2009  

Microsoft Student Partners-TUCN - Using Microsoft Academic Program  

Organized two events whose main purpose was to familiarize the students with the Microsoft Student 

Partners program and the Microsoft technologies.   

Responsibility: Coordinator, Speaker  

Jul. 2008,  

Jul. 2009   

Microsoft Student Partners-TUCN – .NET Summer Rally 2008, 2009   

Held one- and two-week workshops on Object Oriented Programming using C#.  

Responsibility: Coordinator, Trainer  



Software Development Skills  

Software Development   Object Oriented Analysis and Design, Design Patterns, Architectural Patterns, UML  

Programming, Scripting 

Languages  

Advanced C#, Python 

Upper Intermediate JavaScript (JQuery, KO, Angular), HTML, CSS, PowerShell 

Intermediate Java, C, R, SQL 

Beginner C++, LISP, Assembly, VHDL, ActionScript, Mathematica 

Technologies / Frameworks Windows Forms, WPF, ASP.NET [MVC], Azure, Silverlight, WIF, PyTorch, Keras 

Development Tools  
Visual Studio, Eclipse, NetBeans, PyCharm, IntelliJ Idea, TFS, SVN, Git, PowerShell ISE, 

Adobe Flash 

Languages Spoken  

Romanian  Mother tongue  

English  Advanced Level – 14 years of study (Cambridge CAE – Dec. 2006)  

German  Intermediate Level – 4 years of study (currently studying) 

French Lower intermediate Level – 6 years of study 

Danish Beginner level – 1 year of study 

Hobbies and Other Skills  

Basketball, Tennis, Snowboarding, Mountain biking, Trekking, Singing, Dancing.  

I love mountains, nature and the beauty within it. 





Sworn Declaration

I hereby declare under oath that the submitted Master’s Thesis has been written
solely by me without any third-party assistance, information other than provided
sources or aids have not been used and those used have been fully documented.
Sources for literal, paraphrased and cited quotes have been accurately credited.

The submitted document here present is identical to the electronically submit-
ted text document.

Linz, July 2018

Vlad-Ilarie Precup


	Introduction
	Problem Statement
	State of the Art
	Solution Overview

	Business Context
	Problem Context
	Business and Research Goals

	Theoretical Background
	Application Performance Management
	Data Mining
	Data Collection and Integration
	Data Preprocessing

	Unsupervised Machine Learning
	Cluster Analysis and Clustering Algorithms
	Distance Metrics as Parameters for Data Clustering
	Parameter Optimization of the Clustering Algorithms
	Clustering Evaluation: Measuring the Clustering Quality
	Data Visualization


	Method: Clustering the Application Performance Management Problems
	Data Collection
	The Self-normalizing Distance Metric
	Monitoring Problem Data Model
	From Similarity to Distance: Wave Hedges
	Distance Metric Optimization

	Parameter Optimization for the DBSCAN Algorithm

	Experiments
	Experiment Setup
	Data Analysis

	Model Selection
	Data Preprocessing
	Algorithm Comparison

	Evaluation
	Evaluation Test Setup
	Experiments Statistics
	Quantitative Evaluation
	Qualitative Evaluation
	Discussion


	Related Work
	Conclusion
	Future Work
	Product Engineering
	Cluster Analysis Performance Optimization

	Code listings
	List of Figures
	List of Tables
	List of Code Snippets
	Glossary
	Acronyms
	Bibliography

