
Benefits and Drawbacks of Representing

and Analyzing Source Code and Software

Engineering Artifacts with Graph

Databases

Rudolf Ramler1(B) , Georg Buchgeher1, Claus Klammer1, Michael Pfeiffer1,
Christian Salomon1, Hannes Thaller2, and Lukas Linsbauer2

1 Software Competence Center Hagenberg GmbH, Softwarepark 21,
4232 Hagenberg, Austria

{rudolf.ramler,georg.buchgeher,claus.klammer,
michael.pfeiffer,christian.salomon}@scch.at

2 Johannes Kepler University Linz, Altenberger Street 69, 4040 Linz, Austria
{hannes.thaller,lukas.linsbauer}@jku.at

http://www.scch.at

https://www.jku.at/isse

Abstract. Source code and related artifacts of software systems encode
valuable expert knowledge accumulated over many person-years of devel-
opment. Analyzing software systems and extracting this knowledge
requires processing the source code and reconstructing structure and
dependency information. In analysis projects over the last years, we have
created tools and services using graph databases for representing and
analyzing source code and other software engineering artifacts as well
as their dependencies. Graph databases such as Neo4j are optimized for
storing, traversing, and manipulating data in the form of nodes and rela-
tionships. They are scalable, extendable, and can quickly be adapted
for different application scenarios. In this paper, we share our insights
and experience from five different cases where graph databases have been
used as a common solution concept for analyzing source code and related
artifacts. They cover a broad spectrum of use cases from industry and
research, ranging from lightweight dependency analysis to analyzing the
architecture of a large-scale software system with 44 million lines of code.
We discuss the benefits and drawbacks of using graph databases in the
reported cases. The benefits are related to representing dependencies
between source code elements and other artifacts, the support for rapid
prototyping of analysis solutions, and the power and flexibility of the
graph query language. The drawbacks concern the generic frontends of
graph databases and the lack of support for time series data. A summary
of application scenarios for using graph databases concludes the paper.

Keywords: Static analysis · Dependency analysis
Knowledge extraction · Graph database · Neo4j · Experience report

c© Springer Nature Switzerland AG 2019
D. Winkler et al. (Eds.): SWQD 2019, LNBIP 338, pp. 125–148, 2019.
https://doi.org/10.1007/978-3-030-05767-1_9



126 R. Ramler et al.

1 Introduction

The size and complexity of real-world software systems are continuously increas-
ing. Today, many companies develop and maintain software systems containing
hundreds or thousands of source code files encompassing up to several million
lines of code. They often consist of a mix of various technologies and, additionally,
a wide range of related software engineering artifacts such as tests, documenta-
tion, change requests, bug reports, and execution logs. Source code and artifacts
encode valuable expert knowledge accumulated over decades of development.
They represent complex structures and related information about various parts
of the software system.

Nevertheless, the source code and a large part of the artifacts are stored
in text files organized in conventional directory structures. Analyzing software
systems requires parsing these files and reconstructing the structure and relation-
ship information. This first step is typically the precondition for a further, more
advanced analysis aiming at software understanding, interactive exploration,
fault detection, visualization, and documentation. Advanced analysis applica-
tions benefit from infrastructure for processing and representing the structure of
software systems in a scalable and extensible way.

In several projects developing tools and services for software analysis, we have
created different implementations of such infrastructures using graph databases
for representing source code, software engineering artifacts and their relation-
ships. Graph databases [18] are NoSQL databases that support graph data mod-
els, i.e., data represented in the form of nodes connected via edges with each
other. Graph databases are particularly useful if relationships between nodes
are a central characteristic of the stored data. They are optimized for storing,
querying, and manipulating vast amounts of highly connected data by native
support for relationships and enhanced traversal capabilities. Hence, they are
frequently used in a wide range of applications such as recommendation engines,
social networks, collaboration platforms, and medical research systems.

The objective of this paper is to collect and share our experiences with graph
databases in representing and analyzing source code and software engineering
artifacts. We describe five different cases related to different application scenarios
and project contexts. Across all cases, the use of graph databases has emerged as
a common element in the implemented solutions – yet with variations in how the
data is modeled, stored and accessed. By comparing and discussing the different
approaches, data models, and underlying design decisions, we provide insights
into the advantages and disadvantages of graph databases for building analysis
tools and services.

The remainder of the paper is structured as follows. Section 2 provides an
introduction to graph databases and outlines related work. The research design
of our experience report is described in Sect. 3. Details about the five presented
cases are described in Sect. 4. The discussion of identified advantages and disad-
vantages follows in Sect. 5. Finally, Sect. 6 concludes the paper by summarizing
the key findings and suggestions for future work.



Source Code Analysis with Graph Databases 127

2 Background and Related Work

A graph is composed of nodes and relationships. A node represents an entity
(e.g., class, method or variable) and a relationship represents how two nodes
are associated (e.g., a class contains a method, a method calls a method or
reads a variable). Nodes and relationships can have properties that are usually
specified in form of key-value-pairs (e.g., name=‘foo’). This general-purpose
concept enables creating arbitrary connected structures that closely match the
modeled characteristics of the problem domain [4].

A graph database is an online database management system with create,
read, update and delete operations optimized for graph data models [18].
Graph databases are specifically designed to support fast and scalable man-
agement, storage, and traversal of nodes and relationships. This support allows
to specify all relationships representing connections between entities at the time
the data is created, and storing them persistently in the database. When the
database is queried, these relations can be quickly traversed without the need to
compute them dynamically via foreign keys and costly join operations.

The widespread adoption of NoSQL databases for many problem domains
also led to the development of several databases specialized on graph data. Exam-
ples include AllegroGraph (Franz Inc.), InfiniteGraph (Objectivity Inc.), Neo4j
(Neo4j Technology Inc.), and OrientDB (Callidus Software Inc.). A review and
comparison of contemporary graph databases can be found in [3].

The cases we describe in this paper use the graph database Neo4j 1. It is one
of the most popular graph databases, also offered open source. Neo4j is based
on a native graph storage and processing engine. It comes with the declarative
graph query language Cypher that supports the definition, manipulation, and
querying of graphs. Cypher queries can be issued using programming language
specific drivers or the Web-based user interface Neo4j browser. In addition, Neo4j
supports a programming language independent REST API and a low-level Java
driver that can directly access database search facilities.

Many approaches and tools exist for analyzing software systems [13] and for
performing queries on source code [1]. Most of these approaches and tools rely on
database technologies to store structure and dependency information. Although
the use of relational databases is still prevalent, NoSQL databases are receiv-
ing more and more attention. Zhang et al. [24] implemented a framework for
querying heterogeneous code repositories using the document-oriented database
MongoDB.

Graph databases have been applied in a few instances, by Yamaguchi et al.
[22] for analyzing code to discover vulnerabilities, by Urma and Mycroft [21] for
querying source code, by Goonetilleke et al. [8] to implement the tool Frappe for
code comprehension, and in the open source tool jQAssistant2 for ensuring code
quality of Java programs. These applications are related to the cases described

1 https://neo4j.com.
2 https://jqassistant.org.



128 R. Ramler et al.

in our study. However, an analysis of large-scale software systems similar to what
we present in our case study has only been described for Frappe [9].

3 Research Design

This paper reports our insights and experiences gained from using graph
databases in the form of a collection of individual cases. Each case provides
a first-hand account by the authors, who have been personally involved in the
reported cases and the development of the associated tools and services.

Research goals and questions: Besides describing how graph databases are

used, the paper explores what are the advantages and what are the disadvantage

of using graph databases for representing and analyzing source code and related
artifacts.

We conducted the following steps to provide answers to these questions.

1. Case selection: The key criteria for selecting a case to be included in our
report were the use of a graph database, its application for supporting soft-
ware analysis tasks, and the development of related tools or services.

2. Case description: We used a template with a uniform structure related to
a set of open questions to describe the cases. The descriptions were prepared
by the authors involved in the cases.

3. Review of descriptions: The case descriptions were reviewed by co-authors
not involved in the case to assure that the descriptions are complete and
consistent. Variations and extensions to the structure of the descriptions were
introduced to capture individual aspects of the reported cases.

4. Compile overview: A table showing the essential characteristics of all
reported cases was prepared for comparing the cases and for identifying their
commonalities and individualities.

5. Exploration of individual cases: The cases were discussed and explored
further w.r.t. design decisions, encountered challenges, open issues, and feed-
back from users. The findings were the basis for deriving a list of advantages,
disadvantages, and lessons learned for each case.

6. Synthesis of findings: The findings from the individual cases were aggre-
gated to high-level advantages and disadvantages as well as general lessons
learned for presentation in the paper.

Several measures were taken to mitigate threats to validity. We decided
to select multiple cases with different characteristics to support generalization.
The information about the cases was provided by authors who were personally
involved. To reduce the resulting bias, we used a shared template for prepar-
ing case descriptions, which were then reviewed and discussed with authors not
directly involved in the cases.

Nevertheless, analyzing cases does not always allow to accurately identify the
boundary between the observed phenomenon and the context [19]. The advan-
tages, disadvantages and lessons learned we identified in our work may therefore



Source Code Analysis with Graph Databases 129

still depend on influence factors rooted in the specific project or application con-
text. To counter this threat, we decided to put the primary focus of this paper
on the presentation of the individual cases to support the reader in transferring
the insights and experiences to his/her own context.

4 Description of Cases

The five presented cases (Case 1–5 ) cover a variety of different applications
scenarios related to the analysis of source code and related artifacts. Each of
them is based on a unique goal and motivation, derived from its application in
industry projects3 or research. The common theme shared by all cases is the
implementation of tool support and services for which graph databases have
been applied. Table 1 provides an overview of the key characteristics of the five
cases, summarizing the spectrum of different applications realized with graph
databases.

In the subsections below, the descriptions of the cases are based on the fol-
lowing structure.

– Project context: In what application scenarios is the graph database used?
– Data model: What data model is used to represent the structure and rela-

tionships of the analyzed source code or software engineering artifacts?
– Data sources: How is the data created and imported into the database?
– Access and usage: How is the data in the database accessed and used?
– Status and ongoing work: What is the current state of the work and what

are the next steps?

4.1 Case 1: AutoDoc for Lightweight Dependency Analysis

AutoDoc is a lightweight and flexible dependency analysis tool based on static
code analysis for various programming languages.

Project Context: The tool has been developed in a project with industry
partners from the domain of embedded systems. These systems have to fulfill
high quality demands. The project supported the industry partners in improving
software quality by providing unit testing and source code analysis technology.
AutoDoc statically analyzes the source code of the software system and gener-
ates information about components and their interrelations. Furthermore, a set
of code-related metrics is calculated including Halstead, McCabe complexity, and
the Microsoft maintainability index. The results are used by developers in various
ways, for example, to gain an overview of interdependencies between the units
of a software system, to determine areas for refactoring and testability improve-
ments, or to estimate the impact of architectural changes. By using a language
agnostic parsing frontend, the tool is applicable for systems implemented in var-
ious different programming languages; currently, it is used to analyze systems
implemented in C.

3 If not already revealed in previous publications, details about involved industry
partners have been omitted due to confidentiality obligations.



130 R. Ramler et al.

Table 1. Overview of the Reported Cases.

AutoDoc SCoRe eKNOWS
CMS

Sherlock Gradient

Goal and
motivation

Lightweight,
flexible,
customizable
code analysis

Analyzing
industrial
PLC
software

Service for
reusable
static code
analysis

Dependency
analysis for
regression test
selection

Probabilistic
software
modeling

Application
context

Industry
projects

Industry
projects

Industry
projects

Industry
projects

Research
prototype

Represented
source code or
artifacts

Call, read,
and write
dependencies
in various
languages
(currently C)

PLC
programs
written in
IEC 61131-3
languages

Java systems
(from
high-level
config to
source code
statements)

Source code
structure
(C++, C#),
code changes,
system tests,
test coverage

Static code
structure
and models
of behavior
(Java VM
languages)

Users Developers Developers,
software
architects

Developers
of software
engineering
tools and
services

Software
testers, quality
and release
managers

Researchers,
developers

Usage
scenarios

Analysis of
dependencies
enriched
with metrics

Design and
architecture
review,
support for
refactoring

Analysis of
large-scale
systems,
evolution
analysis

Selecting
regression tests
for source code
changes

Program
comprehen-
sion and
behavioral
analysis

Data access
and user
interfaces

Neo4j Web
interface

Neo4j Web
interface

Different
(3rd party)
tools, REST
API

Custom client,
export to test
tool

Custom Web
interface

Data sources Source code
files

Source code
files

Version
control
systems
(VCS)

VCS, task
management,
coverage
analysis, test
management

Source code,
execution
traces from
run-time

Schema size
(distinct
elements)

2 node
types, 6
relationship
types, 9
metric values

24 node
types, 15
relationship
types

83 node
types, 88
relationship
types

9 node types,
15 relationship
types

11 node
types, 20
relationship
types

Size of
analyzed
system

72,000 LOC
C code

742,000
LOC
IEC61131-3

44 million
LOC Java

2.5 million LOC
C++ and C#

n.a.

Data
import/update
strategy

Import,
existing data
replaced

Bulk import,
existing data
replaced

Cyclic
builds, data
partially
updated

Nightly and
manual
updates, data
partially
replaced

Triggered
builds with
incremental
updates



Source Code Analysis with Graph Databases 131

Data Model: AutoDoc stores dependency analysis results as graph into the
Neo4j database. The data model is depicted in Fig. 1. It models dependencies
due to function calls and field access. The nodes are of type function or field.
Relations of type calls exist between functions; reads, writes, read writes,
or indirect writes relations between functions and fields. The more abstract
indirect writes relations show that a member of a field is written by a function.
Metrics values, e.g., complexity measures, are stored as attributes for function
nodes.

Fig. 1. Data model of AutoDoc.

Data Sources: The foundation of the tool is the general-purpose code analysis
platform part of SCCH’s eKNOWS tool family [7], which is used in different
projects in the field of static code analysis, domain knowledge extraction, and
re-documentation. The platform provides parser frontends for numerous pro-
gramming languages to transform the code into the Generic Abstract Syntax
Tree Model (GASTM). The generic representation allows to make downstream
transformations and additional analyses available for any of the supported pro-
gramming languages. AutoDoc utilizes the C code parser frontend of eKNOWS
to transform the code into its GASTM representation (Fig. 2). Call graph and
dependencies are calculated from this model. The resulting graph is stored in the
Neo4j graph database. Analysis runs are triggered either manually on demand
or periodically by integrating the tool into the build process.

Fig. 2. System overview AutoDoc.

Access and Usage: The data stored in the graph database is accessed via
the standard Neo4j Web interface, which supports users in exploring the analy-
sis results by writing queries or executing previously saved queries. We provide
predefined queries to answer common questions with respect to system compo-
nents, dependencies, and accessed variables, for example, “How often are global



132 R. Ramler et al.

variables accessed?”, “What global variables are written by different functions?”,
“What functions access many different global variables?”, “What are the most

complex functions?”, or “Which functions have a high maintainability index?”.
The typical target audience of AutoDoc are developers performing a detailed
analysis of the system under development. We found that these users are com-
fortable with formulating ad-hoc queries using the easy to understand Cypher
query language.

Status and Ongoing Work: AutoDoc is currently used by our industry part-
ners in two main ways, first, for exploring and refactoring of legacy code and,
second, for continuous code quality assurance. While the Neo4j browser seems
sufficient for the first use case, the generation of an analysis report is considered
for the later. The currently analyzed software systems contain up to 72,000 lines
of embedded C code. Nevertheless, it is planned to expand the application of
AutoDoc to analyzing a system of systems with more than a million lines of
code.

4.2 Case 2: SCoRe for PLC Programs

SCoRe is a static analysis tool developed explicitly for analyzing PLC programs
written in IEC 61131-3 programming languages for industrial automation and
production systems.

Project Context: The programming languages defined by the IEC 61131-3
standard [11] are used in industry to implement the control software of real-time
systems. The software runs on dedicated hardware, i.e., programmable logic
controllers (PLCs). Due to the focus on a relatively small niche, these software
systems have received little attention in the past. Only a few software engineering
tools are available, mainly proprietary programming environments tied to PLCs
of specific vendors. However, the size and complexity of today’s industrial control
systems increased the demand for additional tools supporting quality assurance,
testing, software architecture, and design tasks.

Together with our industry partners, we developed a tool for automated static
code analysis of large-scale PLC programs (c.f. [2,15,16]). The tool SCoRe (for
Source Code Review) supports detecting a range of problematic code constructs,
violations of programming conventions, and potential defects. In addition, we
implemented support for analyzing the software design and architecture of con-
trol systems by exporting the structure and dependency information extracted in
static code analysis available to the graph database Neo4j. This solution allows
exploring and examining the various program elements and their dependencies
via custom queries and by browsing the graph visualization in the Neo4j Web
interface. Figure 3 provides an overview of the tool chain. It distinguishes the
tool’s application in implementation for automated static code analysis based
on a set of predefined rules from design and architecture analysis, which requires
support for interactively exploring and reviewing the software system.



Source Code Analysis with Graph Databases 133

Fig. 3. Overview and usage of SCoRe.

Data Model: The Neo4j database contains 24 distinct node types that rep-
resent the various building blocks commonly used in PLC programs [11]. They
are structured into functional units that contain program units (e.g., func-
tion blocks or functions) and define system variables. Program units can call

other program units, read and write system variables, and to send events or
listen for events. Instances of program units are assigned to process tasks

for execution in cyclic intervals. Figure 4 provides an overview of the most impor-
tant building blocks (nodes) and their dependencies (relations). Nodes can con-
tain additional attributes such as the path to the source code files or optional
metric values (e.g., number of imports, or fan-in and fan-out).

Fig. 4. Data model of SCoRe.

Data Sources: The SCoRe tool parses the PLC program, constructs the
abstract syntax tree, the control flow graph, and the data flow graph. The pre-
defined rules are used to detect issues in the source code, which are then listed



134 R. Ramler et al.

as report and in SonarQube’s quality dashboard. As an add-on, the tool also
exports the information about program elements and dependencies to CSV files,
which can be imported into the Neo4j graph database. The imported files rep-
resent the snapshot of the system at the analysis time. The database is wiped
before an import, as updates or incremental changes are currently not supported.

However, the data in the database can be enhanced after the import by
computing additional attributes and relations not present in the initial dataset.
Metric values are a typical example. They are computed with queries on imported
data, and the results are inserted as additional attributes to existing nodes. In
that way, additional abstraction layers can be created, which can again be used
in querying and exploring the system.

Access and Usage: The generic Neo4j Web frontend is used to for submitting
custom Cypher queries and interactive exploration of result graphs. It can be
easily accessed by all members of the development team as only a Web browser is
required. Together with our industry partners we identified the following applica-
tion scenarios for SCoRe: Evaluating the compliance of the implementation with
design decisions and guidelines (e.g., use of global variables), computing metrics
(e.g., coupling and cohesion), support for refactoring (e.g., identifying large pro-
gram units), and analyzing the potential impact of changes (e.g., dependencies
on changed elements).

Status and Ongoing Work: The tool SCoRe is currently applied by two
industry partners developing industrial automation systems. It has been used to
analyze systems up to 742 KLOC implemented in the IEC 61131-3 programming
languages, which resulted in about 450,000 nodes and 2,500,000 relationships in
the graph database. The import into Neo4j required 21.4 seconds on a standard
desktop computer. We are currently working on extending the tool to support
the simultaneous analysis of IEC 61131-3 and C/C++ as our industry partners
are also using a combination of both technologies in PLC programs.

4.3 Case 3: eKNOWS Code Model Service

The eKNOWS Code Model Service (eKNOWS CMS) is a service that provides
reusable static code analysis functionality for Java programs via a dedicated
REST API.

Project Context: eKNOWS CMS has been developed as the foundation of a
microservice-based system for extracting architectural information from large-
scale service-oriented software systems via static code analysis [6]. The system
has been developed in close cooperation with Raiffeisen Software GmbH (RSG),
a provider of IT solutions for the finance domain in Austria.



Source Code Analysis with Graph Databases 135

System Overview: Figure 5 depicts an overview of the eKNOWS CMS. As
shown in the figure, eKNOWS CMS is implemented as a microservice that pro-
vides static code analysis functionality to a set of other microservices and tools.
These analyses are provided via a dedicated Representational State Transfer
(REST) API. Static code analysis in the eKNOWS CMS differs from many
other code analysis approaches where analysis is performed via abstract syntax
tree (AST) visitors for deriving information from the system implementation.
Instead, we have implemented static code analysis by means of Cypher queries.
We provide the following kinds of analyses:

– Search for type and interface declarations of a specified module.
– Search for type, field, and method declarations with specified metadata.
– Search for extended types and implemented interfaces of a specified type

declaration, search for all type declarations derived from a specified type,
and search for all type declarations implementing a specified interface.

– Search for import relationships of a specified module, and search for modules
importing a specified module.

– Search for method declarations of types and interfaces.
– Calculation of call graphs and caller graphs for specified method declarations
– Search for XML documents and elements and attributes of XML documents
– Search for MANIFEST files and their attributes
– Calculation of type dependency relationships.

On top of the eKNOWS CMS we have developed a set of services that use the
provided code analysis functionality. These services then provide information to
different tools used at RSG. A detailed description of the developed services and
used tools can be found in [6].

Fig. 5. eKNOWS code model service - System overview



136 R. Ramler et al.

Data Model: Figure 6 depicts an excerpt of the data model of the eKNOWS
CMS. The data model consists of 83 different node and 88 relationship types that
are used for storing complete implementation artifacts (i.e., source code,
XML, and Manifest files) in Neo4j by converting these artifacts into graph struc-
tures. All implementation artifacts are assigned to a dedicated module, which
is the unit of versioning and deployment. Modules define dependencies to other
modules via import relationships. The eKNOWS CMS can store multiple
versions of the system implementation in Neo4j, i.e., we store all released ver-
sions of a module along with the version of the current development iteration
that is overwritten whenever a cyclic build process is triggered. Modules can
be aggregated to applications to describe modular systems. Finally, we also
store the results of resource-intensive analyses, i.e., call graphs and dependencies
between types in Neo4j to avoid redundant analyses.

Fig. 6. eKNOWS CMS data model (Excerpt).

Data Sources: The eKNOWS CMS operates on implementation artifacts that
are written to Neo4j as part of cyclic build processes. A dedicated Maven Plug-
in fetches the system implementation from version control systems (VCS) and
stores this data in Neo4j (see Fig. 5).

Status and Ongoing Work: eKNOWS CMS has been successfully evaluated
in an industrial case study at RSG in which we have analyzed the entire code-
base of RSG’s latest online banking solution (see [6]). We have analyzed over 44
million lines of code, which were stored as 138,595,573 nodes and 138,141,947



Source Code Analysis with Graph Databases 137

relationships in Neo4j. The correlation between the number of nodes and rela-
tionships results from the fact that we store implementation structures 1:1 in
the database without relationships between implementation artifacts. Such rela-
tionships are either calculated on demand (e.g., inheritance and implemented
interfaces relationships), or they are stored as dedicated data structures (e.g.,
call graphs and type dependencies) where references are defined via node IDs.

Currently, we are working on supporting additional use cases of stakeholders
at RSG by providing corresponding architecture information using the analysis
functionality of eKNOWS CMS. We will further extend the eKNOWS CMS with
additional kinds of analyses to improve our support for automated generation of
viewpoint-based software architecture documentation.

4.4 Case 4: Sherlock for Regression Test Case Selection

Sherlock is a tool that supports regression test case selection in manual system
testing based on test coverage and code changes.

Project Context: Regression testing [23] is performed after making changes to
an existing software system to ensure that these changes do not have unexpected
adverse side effects on the behavior of existing, unchanged parts of the software
system. The straightforward approach to regression testing is to re-execute all
existing test cases to make sure they still pass. However, many software projects
have a large number of test cases, and it is often impossible to re-execute all of
them every time a change has been made. Regression test case selection aims at
selecting a reasonably small subset of the existing test cases, which still has a
high chance of detecting any issues introduced by changes.

We developed the tool Sherlock for selecting regression test cases based on a
list of locations in the source code where changes have been made and the infor-
mation which test cases cover these source code locations [5]. Sherlock specifi-
cally supports interactively selecting test cases for manual regression testing in
the context of a large-scale software product by OMICRON electronics GmbH.
This software product encompasses more than 30 modules (about 2.5 MLOC
in total, mostly implemented in C++) that interact with each other and share a
common framework as well as various base libraries and hardware drivers. The
system has grown to its current size over a time span of more than two decades.
Engineers in different roles (i.e., developers, architects) have contributed over
time, creating a large and sophisticated software system with complex depen-
dencies between application modules, framework components, custom interfaces,
and various third-party libraries. Thus, today, one of the foremost challenges
of effective and efficient regression testing lies in acquiring and managing the
knowledge about the huge amount of dependencies in the software system.

Data Sources: As regression testing is a time-consuming activity [12], Sherlock
helps to reduce required efforts and costs by concentrating on those tests, which
exercise the parts of the system that are affected by changes. For identifying and



138 R. Ramler et al.

selecting the relevant test cases, Sherlock incorporates information from three
data sources (as shown in Fig. 7):

1. Information about source code and changes (e.g., check-ins) is extracted from
the version control system of Microsoft’s Team Foundation Server (TFS).

2. The list of available test cases and their properties are retrieved from the test

management system SilkCentral Test Manager.
3. The relationship between test cases and code changes is determined from

coverage analysis results produced by the profiler SmartBear AQtime Pro.

Custom implemented adapters based on Neo4jClient binding for .NET are
used to extract, transform and load (via a bulk Cypher import) this information
into a Neo4j graph database that acts as Sherlock’s central data store.

Fig. 7. Sherlock system overview.

Data Model: Sherlock stores the data in a tool-agnostic graph format (Fig. 8).
Central information in the Sherlock data model are nodes holding information
about all methods in the system under test, including details such as name or
line numbers stored as attributes. Methods are grouped by files and are part of
one or more change-sets (check-ins performed by a developer). A change-set
in TFS may be connected to a work item that contains either a task, bug, or
feature description, and which is assigned to a software release. A method
is furthermore connected to a regression test case if it is part of the test’s
coverage footprint, i.e., if the method is called during the execution of this test
case.



Source Code Analysis with Graph Databases 139

Fig. 8. Sherlock data model.

Access and Usage: Sherlock supports the testers in selecting the minimal set
of regression tests to target the changes made by the developers. Therefore the
testers access the aggregated information stored in the graph database using a
rich client application. For compiling a regression test suite, the client application
implements several Cypher queries so that testers can identify test cases related
to an individual change (e.g., a bug fix), for all changes within a specified time
range (e.g., all fixes and enhancements combined in a maintenance release), or
all changes made on a branch before it is merged back into the trunk (e.g.,
all changes made while implementing a new feature). The resulting set of test
cases is the basis for subsequent regression test runs scheduled from within the
test management system. Sherlock provides an export interface to update the
test plans in the test management system accordingly. In addition, the tool
also supports the analysis of the available test cases in general. For example, it
indicates coverage gaps when changed source code is not covered by the set of
selected test cases or any test at all.

Status and Ongoing Work: Initially, the project started with test case selec-
tion based on static code analysis results [5], but experiments showed that in
this case, static analysis approaches are not able to reveal enough dependencies
relevant for test case selection, e.g., because of multi-language interoperability or
reflection mechanisms. For this reason, code coverage information was collected
to expose dynamic dependencies as well. Today, check-in information and source
code structure are kept up-to-date by a Windows service that runs on a daily
basis. This service uses custom adapters to import 21,000 check-ins and more
than 200,000 methods that are grouped in 20,000 files. Coverage foot-prints for
currently 400 tests are imported and updated manually after a test case was suc-
cessfully profiled. Sherlock is a valuable aid for providing guidance in selecting
appropriate regression test cases for testers who lack detailed knowledge of the
structure and dependencies of the system under test. In an evaluation, we found
that a junior tester using Sherlock was able to produce test suites with less or



140 R. Ramler et al.

equal effort and at the same level of accuracy as highly experienced testers who
accomplished the same tasks manually [17].

4.5 Case 5: Gradient for Probabilistic Software Modeling

Gradient is a Probabilistic Software Modeling (PSM) [20] system prototype that
uses static and dynamic analysis to model the structure and behavior of a pro-
gram.

Project Context: PSM systems allow engineers to inspect a program’s struc-
ture (Types, Properties, Executables) and behavior (runtime objects) using sta-
tistical models. These statistical models can be used in applications such as
visualization of runtime behavior (e.g., possible values of property age form a
Person class), finding the most likely value combination of the parameters of an
executable or test-case generation. The program structure is extracted via static
code analysis while the behavior observations are extracted via dynamic code
analysis. The static and dynamic information is then used to build a network of
probabilistic models with similar behavior as the original program. The objective
of Gradient is to empower software engineers with the possibility of behavioral
analysis of programs without switching the level of abstraction (Types, Proper-
ties, Executables) or to content themselves with a single execution trace (e.g.,
debugging).

System Overview: Gradient leverages static and dynamic code analysis and
builds a network of models that mirror the system under inspection. Naturally,
it needs multiple stages, components, and technologies to work.

Figure 9 shows an overview of the Gradient system that is split into two parts,
the client- and server-side, operating on three levels: Development, Runtime,
and Modeling. First, ➀ the program structure is extracted from the Source Code

and stored directly into the Graph Database (Neo4j) ➁. Then the source code is
compiled and patched with monitoring aspects that execute the monitoring logic.
The Patched Byte code ➃, containing additional monitoring logic, directly stores
Runtime Events into the Document Database (MongoDB). This entire process
is handled by the Gradient client which in addition reports (not shown in Fig. 9)
the analysis progress to the Gradient server. This client is provided to users in
the form of Gradle [10] (build tool) plugin that handles the entire tool-chain
in a non-intrusive and transparent fashion. The Gradient Server than retrieves
the structural and behavioral data from the databases and combines them into
statistical models ➅. The Structure of the program is retrieved from Neo4j along
with the respective Runtime Events from MongoDB. The resulting models are
stored back in the databases for later use where Neo4j stores the Model Metadata

and MongoDB the raw model data. At last, the Gradient Frontend, hosted on
the Gradient Server as a web application, can be used to access the statistical
models to inspect the behavior of the analyzed program.



Source Code Analysis with Graph Databases 141

Fig. 9. Source code is statically analyzed and stored in the graph database. Further-
more, it is compiled, and the resulting byte code is patched with monitoring code that
reports runtime events to the document database. Both, structure and runtime events
are combined into a statistical model that is written back to the database for later
analysis.

Data Model: Gradient uses a generic high-level data model that can be split
into roughly three categories 1. Code Elements, 2. Project Elements and, 3.
Model Elements, where the digest of it is shown in Fig. 10. Code Elements are
related to the source code data model. Project Elements give code elements a
project context and enable model versioning. Model Elements capture additional
concepts related to the statistical models.

The Code Elements section in Fig. 10 shows that the Gradient data model has
a higher level of abstraction than the traditional Abstract Syntax Tree (AST) as
it only considers Types, Properties, and Executables. In compensation, the data
model introduces Invocation and Access nodes as explicit relationship concepts
that are only implicitly captured on a statement level in an AST. Another addi-
tion is the ElementType that allows direct access to typing information of typed
elements, which cannot be straightforwardly retrieved from an AST.

Project Elements section contains Project nodes and Version nodes used to
manage different projects registered on the same Gradient server. Type, Prop-
erty, Executable are also Versionables containing a version hash that, along with
their qualified name, uniquely identifies them within a project and its versions.

This also enables the database to reuse Versionables, along their associated
statistical models, with the same qualified names and version hash across dif-
ferent versions. Modeling Elements attach model specific information to code



142 R. Ramler et al.

Fig. 10. The graph data model is split into 3 categories: Code Elements, Project Ele-
ments, Model Elements. Code Elements model source code concepts, Project Elements
model project and versioning concepts, and Modeling Elements model concepts related
to the statistical models built by Gradient.

elements that are modeled. For example, Model contains the id of the statistical
model stored in the MongoDB.

Data Sources: Gradient has two sources of data, 1. Static code analysis on
the source code, 2. Dynamic code analysis executed by the patched byte code.
The static analysis parses the source code via Spoon [14] and transforms it into
the Gradient model. This graph is then written into Neo4j providing the struc-
ture. The dynamic analysis is executed by the patched byte code that contains
instructions to write monitoring events into the MongoDB. Neo4j can also be
thought of an index database where each interaction starts by retrieving specific
nodes that point to raw data in MongoDB. This raw data can be millions of
runtime events, each being a JSON document or binary data of the statistical
models.

Access and Usage: Gradient allows engineers to interact with their source
code by inspecting the behavior of types, properties or executables. Neo4j in
this setting is used as a persistent data structure of the source code that reflects
the parts that are exposed to the user, and as index database for binary data
stored in MongoDB. Engineers that use Gradient interact mainly via a graph in
list or visual form with the statistical models, or via pre-configured queries and
tasks that fully abstract the structure.



Source Code Analysis with Graph Databases 143

Status and Ongoing Work: Gradient is an ongoing research prototype for
Java to demonstrate the feasibility of Probabilistic Software Modeling. It cur-
rently implements the static and dynamic analysis as most parts of the statistical
modeling and simple views to view structure, models, and the raw data. High
priority features for the future are tools for test-case generation, anomaly detec-
tion, and a frontend that allows simple interaction with the models for software
developers unfamiliar with statistical modeling. Also, interactions between sta-
tistical models of different versions of the source systems are part of the future
work.

5 Discussion

This section summarizes the insights and lessons learned from the five reported
cases via a discussion of advantages and disadvantages of using graph databases.
In each case, slightly different aspects of often the same advantage or disadvan-
tage were observed. We therefore aggregated the individual findings collected
from the different cases into high-level statements. For each of these statements,
examples describing the experienced benefits and drawbacks are given, including
references to the cases where they have been found.

5.1 Advantages

Graph databases (e.g., Neo4j in our case) are a suitable choice for storing and

querying the data extracted from source code and related artifacts.

+ Graphs are a natural way to represent the manifold dependencies that are
omnipresent in software systems. Working with dependencies has been an
essential motivation and was often the central aspect of the tools we developed
(Case 1–5 ).

+ Graph databases can handle data from large-scale software systems up to
several millions of lines of code as demonstrated by Case 3. The limit of Graph
databases rather lies in the type of data that has to be processed. For log-like
execution data as in Case 5 a document-centered database (e.g., MongoDB)
is preferable; in this case, both databases were used in combination.

Graph databases provide excellent support for rapid prototyping and explor-

ing different options for working with artifacts from software engineering. This
advantage derives from NoSQL databases being schema-less and highly extensi-
ble.

+ Building tools on top of graph databases allow to start using them early, while
still under development, and to advance the tools and the underlying data
model whenever new requirements or usage scenarios are encountered (Case

1–5 ).
+ In Case 4 the Neoclipse plugin for Eclipse has been used in a first prototype

to demonstrate the integrating of the tool Sherlock into the development
environment.



144 R. Ramler et al.

+ In all five cases presented above the implemented tools emerged out of
research projects, where the initial versions of the tools were repeatedly
revised and successively extended, e.g., to match the diverse needs of our
industry partners (Case 1–4 ).

Graph query languages (e.g., Cypher in our case) provide a powerful and
simple way to understand, retrieve, and manipulate graphs representing source
code or related artifacts.

+ Structured processing of code and other artifacts was found to be easier when
using the expressiveness of graph queries than with conventional, program-
matic approaches (Case 2 and 3 ). For instance, searching the AST for all
method call expressions of a particular method declaration can be achieved
by a simple query instead of implementing an AST visitor that requires vis-
iting all method call expressions of a compilation unit and determining for
each expression if it belongs to the specified method declaration by checking
all parent elements until a method declaration expression is found.

+ In Case 1 and Case 2, the users of our tools were developers. For them, it
was straightforward to write queries after a short introduction to the Cypher
query language. Dozens of queries have been created so far, supporting a wide
range of common analysis tasks. The queries are stored as scripts that can be
easily shared and adapted to new analysis tasks.

+ The standard Neo4j Web frontend was used for querying the graph structure
and to retrieve the required information about the analyzed software system.
Therefore it was not necessary to develop a dedicated client or user interface
in Case 1 and Case 2.

5.2 Disadvantages

The generic frontends available for graph databases (e.g., Web-based Neo4j
browser) are often not adequate for supporting end users in performing the
specific tasks involved in the studied cases. Custom user interfaces had to be
implemented for several of our tools.

– The standard Web interface of Neo4j provides a convenient way to submit
queries to the database and to review the results using a visualization of the
graph. Nevertheless, the dynamic visualization makes it difficult to maintain
the overview when working with large result sets containing dependency data
(Case 1 and Case 2 ). Alternative clients (e.g., yFiles Neo4j Explorer) offer
improved layouts and comfortable filtering, but the inherent weaknesses of a
generic solution remain.

– Support for specific graphical representations cannot always be provided. In
Case 2, for example, company partners suggested to display all program ele-
ments implemented in the same unit grouped using visual containers (e.g.,
boxes) representing these units. In contrast, a generic visualization will show
the “implemented in” relationship as lines connecting each of the program
elements with nodes representing the units.



Source Code Analysis with Graph Databases 145

– The generic user interface does not provide any guidance for users to perform
tasks step by step, e.g., in selecting test cases based on a previous selection
of a set of code changes (Case 4 ).

– Available frontends are usually restricted to explore data of only one graph
database. It is not possible to connect data from two or more databases
running in parallel or from an external data source, e.g., when combining
the static structure of a software system with code changes (Case 4 ) or its
dynamic behavior (Case 5 ).

Graph databases show a lack of support for time series data. This deficiency
can be attributed to their specialization on graph data and the philosophy fol-
lowed by many NoSQL databases, which is “do one thing and do it well”. Neo4j,
as we used it in our cases, does not offer any features specific for storing or
querying time series data.

– In modeling software engineering artifacts, however, time-related dependen-
cies play a major role due to the evolutionary and incremental approach in
which software is developed. Thus, we had to develop graph models that can
represent a specific combination of code, artifacts, and dependencies at a par-
ticular point in time, e.g., by relating them to dedicated nodes representing
software releases or versions (Case 3–5 ).

– In Case 4, some of the nodes (e.g., work items) also contain timestamps as
attributes, which were required to formulate queries with an additional where
clause to retrieve all elements in a specific time span.

– In Case 5, log-like time series data from execution is stored in a separate
database. The characteristic property of such data is the sequential ordering
of the entries, which are recorded over time.

– Time points are also relevant in Case 1 and Case 2. However, in these cases,
the pragmatic solution was to store only a snapshot of the software system
at a particular point in time in the graph database. For analyzing another
snapshot, e.g., a new build or version, the entire data set has to be replaced.
Managing the dependencies to builds, releases, versions, etc. is left to the
users applying the tools.

6 Summary and Conclusions

In this paper, we described our experiences and lessons learned from building
software analysis tools and services based on graph databases. We presented five
different cases related to different application scenarios and project contexts.
Each of the five cases (Case 1–5 ) is an example showing that graph databases
can be effectively used for representing and analyzing source code and software
engineering artifacts. The diversity as well as the size and complexity of the
reported cases underpin this finding.

A broad range of program elements is stored in the form nodes and relation-
ships in the graph databases. They range from dependencies such as function
calls and read/write access to variables (Case 1 ) to the entire AST of large-scale



146 R. Ramler et al.

software systems (Case 3 ). Software written in various programming languages

has been represented as graphs, e.g., C, C++, C#, Java, and IEC 61131-3 lan-
guages (Case 1–5 ). The resulting size and complexity of the graph structures

range from only two distinct node types and 6 distinct relationship types (Case

1 ) to 83 node types and 88 different relationship types (Case 3 ).
The graph databases showed a high level of scalability when used for ana-

lyzing up to 44 million lines of code at the level of individual syntax elements.
The resulting graph contained more than 138 million nodes and about the same
amount of relationships, which were stored in the database (Case 3 ).

The graph models were used for capturing the data extracted from various
different artifacts: Source code files (Case 1–5 ); system configurations in form
of XML files (Case 3 ); work items, check-ins, software tests, and coverage infor-
mation (Case 4 ); project and version information (Case 3–5 ).

The databases are populated in a single initial import replacing existing data
(Case 1–2 ) or they are updated in increments partially extending the data in
the database (Case 3–5 ). The various approaches for accessing the data include
Neo4j’s standard Web interface (Case 1–2 ), custom built client applications
(Case 3–5 ), a REST API (Case 3 ), and an export interface (Case 4 ).

The insights and lessons learned we collected from using graph databases have
been compiled into a list of advantages and disadvantages to support decisions
in related and future applications.

The key advantages, relevant for choosing graph databases as storage option
in software analysis, are related to the versatility of the graph data model. It was
found suitable to represent all kind of structures and relations usually encoun-
tered in software systems. It can be used to represent dependencies between
individual program elements as well as for links across technology boundaries.
In addition, the flexibility and scalability of graph databases provide an ideal
basis for prototyping and evolving analysis solutions. Finally, specialized graph

query languages are a powerful yet easy to use means for traversing the huge
amounts of nodes and relations required to represent large and complex software
systems.

The identified disadvantages concern, first, the limited usefulness of standard

database frontends for end users. The issue with highly generic clients such as the
Neo4j browser and similar tools is not a limitation in their functionality. On the
contrary, they provide too many options. Custom interfaces built for end users
offer only a fraction of their functionality, but they are meaningful in context of
a specific usage scenario. Second, graph databases provide no support for time

series data. Although this is natural consequence of the specialization of graph
databases, there is nevertheless the need to represent time-related aspects in all
kind of data produced in software development processes.

In future we expect to see a rising number of projects using graph databases
for source code analysis and related software engineering tasks. As contribution
we plan to investigate ways to combine storage approaches specialized for graph
and time series data for building a new tool and service infrastructure.



Source Code Analysis with Graph Databases 147

Acknowledgements. The research reported in this paper was supported by the Aus-
trian Ministry for Transport, Innovation and Technology, the Federal Ministry for Dig-
ital and Economic Affairs, and the Province of Upper Austria in the frame of the
COMET center SCCH.

References

1. Alves, T.L., Hage, J., Rademaker, P.: A comparative study of code query technolo-
gies. In: 11th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM) 2011, pp. 145–154. IEEE (2011)

2. Angerer, F., Prähofer, H., Ramler, R., Grillenberger, F.: Points-to analysis of IEC
61131–3 programs: Implementation and application. In: IEEE 18th Conference on
Emerging Technologies & Factory Automation (ETFA) 2013, pp. 1–8. IEEE (2013)

3. Angles, R.: A comparison of current graph database models. In: IEEE 28th Inter-
national Conference on Data Engineering Workshops (ICDEW) 2012. pp. 171–177.
IEEE (2012)

4. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
(CSUR) 40(1), 1 (2008)

5. Buchgeher, G., Ernstbrunner, C., Ramler, R., Lusser, M.: Towards tool-support
for test case selection in manual regression testing. In: IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW)
2013, pp. 74–79. IEEE (2013)

6. Buchgeher, G., Weinreich, R., Huber, H.: A platform for the automated provision-
ing of architecture information for large-scale service-oriented software systems. In:
European Conference on Software Architecture. Springer (2018) (to appear)

7. Fleck, G., Kirchmayr, W., Moser, M., Nocke, L., Pichler, J., Tober, R., Witlatschil,
M.: Experience report on building ASTM based tools for multi-language reverse
engineering. In:IEEE 23rd International Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER) 2016, vol. 1, pp. 683–687. IEEE (2016)

8. Goonetilleke, O., Meibusch, D., Barham, B.: Graph data management of evolving
dependency graphs for multi-versioned codebases. In: IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME) 2017, pp. 574–583. IEEE
(2017)

9. Hawes, N., Barham, B., Cifuentes, C.: Frappé: Querying the Linux kernel depen-
dency graph. In: Proceedings of the GRADES 2015, p. 4. ACM (2015)

10. Ikkink, H.K.: Gradle Dependency Management. Packt Publishing, Birmingham
(2015)

11. John, K.H., Tiegelkamp, M.: IEC 61131–3: Programming Industrial Automation
Systems. Concepts and Programming Languages, Requirements for Programming
Systems Decision-making Aids. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12015-2

12. Juergens, E., Hummel, B., Deissenboeck, F., Feilkas, M., Schlogel, C., Wubbeke,
A.: Regression test selection of manual system tests in practice. In: 15th European
Conference on Software Maintenance and Reengineering, pp. 309–312, March 2011

13. Passos, L., Terra, R., Valente, M.T., Diniz, R., das Mendonca, N.C.: Static
architecture-conformance checking: an illustrative overview. IEEE Softw. 27(5),
82–89 (2010)

14. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: SPOON: A
library for implementing analyses and transformations of Java source code. Softw.
Pract. Exp. 46(9), 1155–1179 (2015)



148 R. Ramler et al.

15. Prähofer, H., Angerer, F., Ramler, R., Grillenberger, F.: Static code analysis of iec
61131–3 programs: Comprehensive tool support and experiences from large-scale
industrial application. IEEE Trans. Ind. Inform. 13(1), 37–47 (2017)

16. Prähofer, H., Angerer, F., Ramler, R., Lacheiner, H., Grillenberger, F.: Opportuni-
ties and challenges of static code analysis of iec 61131–3 programs. In: IEEE 17th
Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1–8.
IEEE (2012)

17. Ramler, R., Salomon, C., Buchgeher, G., Lusser, M.: Tool support for change-
based regression testing: an industry experience report. In: Winkler, D., Biffl, S.,
Bergsmann, J. (eds.) SWQD 2017. LNBIP, vol. 269, pp. 133–152. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-49421-0 10

18. Robinson, I., Webber, J., Eifrem, E.: Graph Databases: New Opportunities for
Connected Data. O’Reilly. Media Inc., Sebastopol (2015)

19. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering. Guidelines and Examples. Wiley, Hoboken (2012)

20. Thaller, H.: Probabilistic Software Modeling, Jun 2018. arXiv:1806.08942 [cs]
21. Urma, R.G., Mycroft, A.: Source-code queries with graph databases-with applica-

tion to programming language usage and evolution. Sci. Comput. Program. 97,
127–134 (2015)

22. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulnera-
bilities with code property graphs. In: IEEE Symposium on Security and Privacy
(SP), pp. 590–604. IEEE (2014)

23. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

24. Zhang, T., Pan, M., Zhao, J., Yu, Y., Li, X.: An open framework for semantic code
queries on heterogeneous repositories. In: International Symposium on Theoretical
Aspects of Software Engineering (TASE), pp. 39–46. IEEE (2015)


