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—— Abstract

Software Engineering and the implementation of software has become a challenging task as many
tools, frameworks and languages must be orchestrated into one functioning piece. This complexity
increases the need for testing and analysis methodologies that aid the developers and engineers as
the software grows and evolves. The amount of resources that companies budget for testing and
analysis is limited, highlighting the importance of automation for economic software development.
We propose Probabilistic Software Modeling, a new paradigm for software modeling that builds
on the fact that software is an easy-to-monitor environment from which statistical models can be
built. Probabilistic Software Modeling provides increased comprehension for engineers without
changing the level of abstraction. The approach relies on the recursive decomposition principle
of object-oriented programming to build hierarchies of probabilistic models that are fitted via
observations collected at runtime of a software system. This leads to a network of models that
mirror the static structure of the software system while modeling its dynamic runtime behavior.
The resulting models can be used in applications such as test-case generation, anomaly and outlier
detection, probabilistic program simulation, or state predictions. Ideally, probabilistic software
modeling allows the use of the entire spectrum of statistical modeling and inference for software,
enabling in-depth analysis and generative procedures for software.
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1 Introduction

Software and software development is an omnipresent and growing industry, and many modern
advances in other domains hinge on the success in computer science. Many software systems
never stop growing and evolving, consuming thousands of developer days; hence, knowledge
and understanding of these systems are essential. This growth poses new requirements in
software engineering, not only on an organizational level but also on a functional level. How
can we understand the behavior of a system? How can we apply reuse on a broad scale? How
can we guarantee a specific behavior? How can we automate development efforts? Many
of these questions are already (partially) answered by existing modeling techniques while
others are not.
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Innovation and Technology, the Federal Ministry of Science, Research and Economy, and the Province
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Probabilistic Software Modeling

The two main modeling approaches currently are Model-Driven Engineering (MDE) [18]
and Formal Methods (FM) [7], which share some commonalities but have different goals.
In MDE, engineers create domain models on a higher abstraction level than source code to
scale the overall development process. A typical technique is to create a Domain Specific
(Visual) Language (DSL) from which code and reference implementations can be generated
and reused. Another prominent MDE example is the Unified Modeling Language (UML)
[17] that conceptualizes many aspects of software development. Formal Methods focuses on
software specifications via logic. Resulting models are unambiguous machine interpretable
specifications used to generate the application code. The resulting code needs less testing
since many program states and transitions can be verified by automatic proofs. Relative to
MDE, FM lowers the abstraction level as concepts such as conditions and invariants, need
to be designed, elicited and foremost proven before a single line of code is executed. Many
other specialized modeling techniques stem from these two approaches, e.g., model-based
testing borrows techniques from formal methods. While these modeling techniques offer
significant benefits in their respective areas, both lack a way to inspect software and its
runtime behavior in a direct, visual and interactive way an engineer would appreciate. MDE
lifts the abstraction level on which engineers reason about the best structure for reuse, while
FM lowers the abstraction level down into the regime of logic where no ambiguity is allowed.

[ NutritionAdvisor O Person

A bmiService: BmiService height: float

weight: float

O advice(p:Person): String

!

[ BmiService

O bmi(height: float, weight: float): float

Figure 1 The class diagram is depicting the structure of a Nutrition Advisor system.
NutritionAdvisor is the main class and entry point for requests. Its advice method takes a Person
entity and returns a textual advice regarding its nutrition. Person stores nutrition relevant properties that
BmiService service uses to compute the Body Mass Index (BMI) on which the textual advice is based.

We propose Probabilistic Software Modeling (PSM), a data-driven modeling paradigm for
software that allows simulation and analysis of software systems. PSM builds a Probabilistic
Model (PM) from the system under inspection by analyzing its structure, i.e., types, properties
and executables, and behavior via static and dynamic code analysis. These probabilistic
models are then used in typical predictive and generative tasks known from statistical
inference. For example, the visualization of a property’s distribution at runtime (e.g.,
Person.weight in Figure 1 with behavior in Figure 2), or prediction of the next most likely
value (or distribution of values) of a property’s active state, etc. Furthermore, inference allows
the simulation of entire sub-systems through probabilistic execution of the corresponding
models.

PSM positions itself as a complementary software modeling approach to MDE or FM.
It offers engineers and programmers to interact with the software’s structure and behavior
through statistical models. Forward and Lethbridge [9] showed that many issues with
code-centric comprehension and analysis, i.e., fixing bugs, analyzing structure and behavior
by inspecting the source code, come from the fact that developers cannot see and feel the
structure and behavior of their system, especially after changes. This results in a typical
behavior where programmers, even if they are confident in their code through tests, tend
to inspect changes in code via debugging to see an instantiation of its runtime behavior.
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Figure 2 Distribution of the Weight variable of the Person class depicting its behavior at runtime.
The histogram shows all weight values that objects of type Person had during the runtime. These values
were generated using the True Distribution (purple) and approximated by the Fitted Distribution (yellow).

PSM tries to alleviate these issues by making structure and behavior explicit in models. The
usage patterns of PSM are focused on increasing confidence through comprehension and
white-boxing of software. PSM provides fine-grained control of variables and their interactions
within a system, letting the engineers see and manipulate what happens at runtime through
PMs and statistical inference. Idealistically, PSM allows companies that provide software
components such as APIs, plugins, frameworks, to exchange their probabilistic models with
partners. These models are then used to inspect and check the behavior, generate tests from
the models, or to simulate and infer the behavior at the boundaries of internal and external
components via the PMs of the partners. That is a unified communication framework via
models without the need for a full running system. Again, PSM is a complementary approach
to software modeling, and existing practices should benefit from it. MDE can be paired with
PSM to check the compatibility and integrity of a new configuration build via MDE. FM
could benefit from PSM by using it to check and generate tests from non-critical sub-systems
in a less rigorous and data-driven way. In sum, PSM is a modeling paradigm for the analysis
of systems on the abstraction level of code, hence, complements existing techniques in their
effort for better software comprehension.

2 Applications

Probabilistic software modeling is, to the best of our knowledge, the first attempt to model
the software’s structure and behavior purely in terms of probabilistic models. Hence, it might
not be clear what applications PSM can enable. As mentioned, PMs allow for predictive and
generative tasks, however, this discrimination is purely conceptual in the context of PSM as
the underlying techniques (e.g., approximate inference by sampling [15]) and their associated
notations are the same.

Predictive tasks use the PMs to predict probabilities, values, and distributions according
to criteria in an inferential query. For instance, given the Person class and its properties in
Figure 1, it is possible to query the PM how likely a specific value or value range is, e.g.,
P(Weight > 80.0). By conditioning on other variables, it is possible to infer relationships
between variables. For example, P(Weight | 169.0 < Height < 170.0) results in the
distribution of Weight values for persons with a height of 169¢m.
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Generative tasks sample observations from the PMs underlying distributions by ei-
ther using the distribution as-is or by conditioning on other variables. For instance, the
PM can be used to instantiate objects of the Person class by sampling for its properties
P(Height, Weight) ~ (69.54,169.59)T. Similar to the predictive tasks, it is possible to sam-
ple values from conditioned distributions, effectively generating samples according to some
criteria. Both cases are inferential tasks that allow a broad range of possible applications.
The following non-exhaustive list are applications that are part of the future research.

2.1 Predictive Applications

Predictive applications seek to quantify, visualize and analyze the behavior of software.

Visualization & Comprehension applications of PSM have the goal to white-box
software by making the runtime explicit for engineers. The visualizations show the distribution
of properties, inputs, and outputs of executables. These visualizations can be adapted by
conditioning the underlying source models with specific variables. For example, what does the
Body Mass Index (BMI) look like for people with a height of 160cm? Furthermore, untypical
examples can be visualized and followed through other models effectively visualizing how far
they ripple through the system and the effect they have on downstream components. For
instance, how far can an invalid weight of —10 ripple through the application without being
caught and which effect does it have?

Integrity & Compatibility Evaluation quantifies the consistency between and within
software components. Integrity measures the amount of divergence between models of
different versions of a component. The divergence is the integrity measure aggregating
the distribution of accepted and unaccepted values. This distribution can be visualized,
conditioned and used for further inferential tasks, e.g., spotting regression and analyzing
expected behavior changes. Compatibility evaluation measures the amount of divergence
between models of different components and enables the same applications as integrity
evaluation such as quantification, visualization, inferential queries.

Anomaly Detection [6, 11] applications can be employed during development but also
in live systems. A PM is used as reference behavior to check whether the newly observed
behavior lies within the bounds of its distributions. The implementation might be as simple
as the inferential query P(Weight = x) < 0.1 where z is the currently observed value.
The condition triggers an action if the likelihood of the current value is smaller then 0.1.
Additionally, PSM can compute the ripple distance' and effect of the anomaly for detailed
reports that summarize the incident.

2.2 Generative Applications

Generative applications reproduce the system’s runtime behavior by generating new instances
of code elements such as classes, parameters, and return values.

Test-case generation [2, 5] can be realized by sampling from the PMs. For example,
test-suites can be organized into typical, rare, and impossible where the categories indicate the
probability range the sampled values are allowed to have. A test-suite with rare invocations
for the NutritionAdvisor.advice(p:Person) could be constructed by sampling values that
with 0.02 < P(Person) = P(Height, Weight) < 0.1 from the types PM. This allows to
generate tests regarding the prevalence of states and values providing a better understanding
of the behavior. Furthermore, test-case generation can be used to evaluate the integrity and
compatibility of components partially. For integrity evaluation, the PM of the old version

! Distance from the anomaly origin to the first time it is actively perceived, counted in functions calls
(call stack).
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generates tests for the new version to find regressions. For compatibility evaluation, the
call-site PM generates tests for the receiving site to find incompatibilities.

Simulation, similar to test-case generation, samples values from the PMs and condi-
tions downstream PMs with the sampled values. This effectively executes the system in a
probabilistic fashion with the expected behavior according to the underlying distributions.

3 Approach

Probabilistic Software Modeling builds on the fact that software systems and programming
languages are based on the recursive decomposition principle [16]. Any complex information
event on one level can be described on another level by a number of components and a process
specifying the relations among these. Reinterpreted for PSM and modern object-oriented
software development: Instead of modeling the entire software (structure and behavior) in
one complex probabilistic model, a recursive decomposition it into smaller models and their
relationships yields a model with similar behavior. For that, the level of abstraction needs to
be fixed. As mentioned, PSM is designed to analyze software on the same abstraction level
developers are used to making, types, properties, and executables an appropriate choice.

context: Context advisor: NutritionAdvisor person: Person bmiService: BmiService
O advice(person)
A height
168.59
A weight
69.54

© bmi(height=169.59, weight=69.54)

24.466

"You are healty, try a ..."

Figure 3 Example request to the Nutrition Advisor depicting its behavior. The client makes a new
request which is handled via the advisor method of the NutritionAdvisor class. The method retrieves
the properties of the person object and computes the BMI using the bmiService. Based on the result it
returns a textual advice.

Figure 1 shows an example of a nutrition advisor application. NutritionAdvisor takes a
Person, extracts its height and weight and feeds it into the BmiService.bmi(.) method
that computes the BMI of a person. Based on the result, it returns a textual advice regarding
its nutrition. Figure 3 illustrates one request to this application in the form of a sequence
diagram. In this example, the person is 168.59¢m tall and 69.54kg heavy resulting in a
BMI of 24.466 by which the textual advice is computed. A practical and straightforward
application which exists (at least up to the advice) in various forms on the Internet.

3.1 Usage Scenario

PSM is essentially a two-step approach in which we (1) analyze the structure of the application
via static code analysis, and then (2) the behavior via dynamic code analysis (i.e., runtime
monitoring). Figure 4 illustrates this basic usage scenario. Starting with the Source Code @
that has some Structure @, we first analyze these static structural aspects (i.e., properties,
types, executables) to define a Probabilistic Model Network ® that mimics this structure.
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Program Probabilistic Model
@ Structure @ Network

Static Code
Analysis
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PSM I_.()_I
has /
Dynamic Code
Analysis

@ Runtime @ Behavior
Behavior Observations

Source Code Model

Figure 4 Source Code @ has some structural @ and behavioral @ properties that are extracted
via static and dynamic code analysis. This results a network of probabilistic models ® and behavior
observations ® that are combined by PSM ® into the final model @.

After that, the source code is executed to trigger a Runtime Behavior ® which provides
the Behavior Observations ® via dynamic code analysis. At last, PSM ® approximates the
behavior of each node within the probabilistic model network using the behavior observations
to build the final Model @. Figure 2 shows an example of such an approximated behavior by
visualizing the distribution of Person.weight property in the Nutrition Advisor example.
The blue histogram is the monitored data from the dynamic code analysis while the yellow
line is the fitted distribution. In this running example, the data was sampled from the True
Distribution (purple), which is the target quantity (usually unknown) the PM approximates.
At this point, often the question arises whether it is possible to acquire a meaningful dataset.
Software is developed around data, and engineers have an excellent understanding of it. That
is, engineers solve problems, problems are represented by their data. Hence, engineers need
to have an understanding of the data to build a solution (problem-solving process [12, 19]).
A shop handles articles, a video-on-demand service offers videos, and the control system of
a spaceship handles the remaining Aw, thus acquiring a meaningful dataset is often not a
problem.

3.2 Modeling

Figure 5 shows the network of probabilistic models of the Nutrition Advisor example
containing the random variables for types, properties, and executables. Properties are random
variables. Types are quantified by their properties, hence, are joint models of their property’s
random variables. In the case where a type does not have a property, the distribution of
the type itself is empty. The objects of a type that has no state are indistinguishable from
each other; therefore there is no information to extract. This applies transitively as the
bmiService property in the Nutrition Advisor class shows. Executables are random variables
that are conditioned on their input parameters, property reads and method invocations
(return values). For instance, advice(.) is conditioned on person (parameter), height, weight
(property reads) and bmi(.) (method invocation). All classes that are considered by PSM
are within the probabilistic modeling universe and can be used for the above-mentioned
applications in Section 2. However, there will always be external types beyond the modeling
universe illustrated by the Context class in Figure 5. Boundaries between external and
modeled code elements are bridged by interpreting the external elements as latent variables.
The effect of these variables on the PMs in the modeling universe is subject to the data and
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Figure 5 Graphical model of the Nutrition Advisor’s structure of probabilistic models and random
variables. A Property is a model with one random variable representing the property itself. The joint
distribution of all properties of a class represents the model of the enclosing Type. An FExecutable is a
conditional model of its parameters, property reads, and method invocations. The Probabilistic Modeling
Universe are all classes that are considered during modeling.

its distribution. That is, no specific variables are constructed for external elements, but their
dependencies and effects to universe-internal elements are described through the runtime
data itself (statistical dependencies).

To summarize, PSM uses random variables to construct small PMs of types, properties,
and executables that are connected by conditioning on related elements. Each PM is a
generative model capable of producing the distribution of the code element according to the
dynamically observed values.

3.3 Inference Method Requirements

The PMs in Figure 5 can be implemented with various statistical modeling techniques.
However, the application context imposes specific requirements onto the modeling method.
Modeling techniques have to be 1. decidable, 2. computationally efficient, 3. non-parametric,
4. universal. Decidable such that a clear exit criterion for the density approximation exists.
Computationally efficient such that large amounts of data and models can be fitted with a
limited budget. Non-parametric such that no assumptions about the data itself have to be
made. Universal such that any given distribution can be approximated. The prototype will
be based on Variational Autoencoders (VAEs) [14], and Probabilistic Programming [10] as
these were deemed most promising.

3.4 Limitations

PSM has several limitations and constraints. One constraint is that subsystems need to be
runnable. There is no limitation on the size of a subsystem as models can be built from
functions which are the smallest runnable piece of code. However, the fact that it needs a
runtime in itself may be a limitation. Furthermore, the need for a sensible runtime extends
this limitation. PSM models reflect a program and enable probabilistic inference on them.
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Hence, the fitted behavior will be similar to the program’s behavior at runtime. Running a
program with arbitrary data reduces the PSM analysis capabilities to interactions of elements
since the distributions of the elements themselves might not be representable for the real
world. At last, the programming language must be reasonably structured as models are
on the level of executables, i.e., the recursive decomposition principle must apply to the
programming language. Whether this decomposition is enforced via classes and their objects,
or via procedures is irrelevant. Furthermore, the language must allow for runtime monitoring.

4 Related Work

The Unified Modeling Language (UML) [17] is a prominent example of visual modeling of
software. Its primary purpose is to aid engineers in their design efforts by defining diagrams
that capture module, sequence, requirement or state concerns. Another goal of UML is
communication by providing a unified visual representation of software design.

UML is often associated with Model-driven Engineering (MDE) [18] as it can be used
as a modeling language. MDE is a modeling approach with a wide variety of techniques
targeted for reuse and synthesis of software using UML or DSLs. It achieves this by increasing
the level of abstraction resulting in increased productivity, portability, maintainability and
interoperability. However, increasing the abstraction by introducing a new artifact adds
mapping costs between the high-level abstraction and the low-level representations. Often
the (low-level) code and the (high-level) model gets desynchronized [9], thus reducing its
usefulness. Also, technical issues and bug fixes cannot be solved in models. Compared to
PSM, MDE helps to improve engineering tasks before the modeled code is written. On the
other hand, PSM aids engineers in understanding the actual instantiation of the system by
letting them interact with its behavior. The study from Forward and Lethbridge [9] suggests
synergetic effects between MDE and PSM in their endeavor of software comprehension. MDE
supports engineers in solving model-centric issues, i.e., design, module decomposition and
reuse, while PSM offers support for code-centric issues such as behavior comprehension,
regression analysis, and fixing of bugs, that are often tedious in the source code.

Formal Methods is a modeling approach that focuses on software specification in logical
terms. Once a system’s behavior is fully specified by formal models, the entire application
can be synthesized from it. This, ideally, makes testing obsolete as the specification itself
can be part of proofs. However, the transition from the uncertain real world into the perfect
mathematical world has several issues. It is time-consuming, needs personnel with the
appropriate education, and changes the standard development process quite drastically [7, 1].
Furthermore, both boundaries are limited by humans, i.e., the formal model is just as good
as the requirements document. Similarly, the translated code is only as correct as the
human implemented translator is. However, safety-critical systems greatly benefit from FM
because of its ability to provide proof of the behavior [1]. Compared to PSM, FM moves
the comprehension of the application and its requirements into the design phase when the
specification models are created. PSM may mitigate some of the issues by reducing the FM
part to critical systems while non-critical systems are comprehended using PSM.

Symbolic Execution [13] avoids structural abstraction level changes by combining testing
and formal methods. It generalizes testing by replacing real variable values, with symbolic
values and keeps track of the symbolic program path. This allows the exploration of multiple
program paths simultaneously giving an understanding of which program points are reachable
or not. Typical applications are programs path space comprehension, test input generation,
and finding bugs or vulnerabilities of the code. Challenges are for example path explosions,
external environments, and loop invariants [3]. In comparison to PSM, Symbolic Execution
abstracts the concrete values to path conditions while PSM models a distribution of the
encountered values. Symbolic Execution finds inconsistencies in the code by systematically
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solving for all possible program paths. PSM, on the other hand, builds distributions of
the application components and captures questionable behavior across them. Probabilistic
Program Analysis (PPA) [8] is an extension of Symbolic Execution that quantifies program
paths and points utilizing probabilities, instead of the binary decision satisfiable and not
satisfiable. So given a program and a statement of interest, Probabilistic Program Analysis
can quantify the likelihood a specific statement is executed. Regardless of the similar names,
PSM and Probabilistic Program Analysis do not share many similarities. PSM models the
content of a statement over multiple executions, while PPA quantifies the likelihood that a
statement is executed (PPA).

5 Research Goals and Evaluation Strategies

The goal of this work is to devise and define the essential 1. characteristics, 2. methodologies,
and 3. applications, that characterize probabilistic software modeling. These definitions and
strategies should guide the implementation of a prototypical PSM system and the introduction
of the modeling paradigm itself. Characteristics will be concerned with when and where
PSM is the right choice based on the success of the implemented applications. Methodologies
describe how to exploit the benefits and drawbacks of structural and temporal dependencies
of the system’s random variables (types, properties, executables). Applications provide
means to quantify the approach empirically, and its appropriateness in the respective domain.
The combination of the three research goals (characteristics, methodologies, applications)
will allow the evaluation of PSM and its capabilities to solve the problem of software
comprehension.

The implementation of a prototypical PSM system will drive the evaluation of the research.
PSM tries to estimate the densities of code elements at runtime, hence, is an unsupervised
machine learning approach that is typically harder to evaluate as well-known supervised
methods. Benchmarks, such as DaCapo [4], will be used to evaluate the prototype on
real-world examples measuring the estimated fit of the PMs. This fit is evaluated by visual
inspection (qualitative) of interesting cases (such as strings), and by metrics (quantitative)
that measure the error between sampled and original dataset quantifying bias and variance
of the models. On a higher level, the prototype will be evaluated by implementing concrete
applications mentioned in Section 2. These will be subject to studies that compare the
PSM solution to the current state-of-art. Both qualitative and quantitative evaluations of
the studies mentioned above will provide evidence whether PSM improves on the current
state-of-art of supporting program comprehension. That is, by either improving existing
techniques (such as test-case generation) or by additional support (such as inferential queries,
simulation).

6 Conclusion

We presented Probabilistic Software Modeling (PSM), a complementary software modeling
approach. The goal of PSM is to support software comprehension from a code-centric
perspective. The approach complements MDE in that it provides engineers a way to reason
about software and its runtime after a system has been implemented. Further, this reasoning
is done on the same level as the implementation concepts (types, properties, and executables).
An overview of the approach was given on a conceptual level which was then compared with
existing other modeling approaches to see commonalities and possible synergies. At last, we
provided an outlook of the research methodology, possible applications, and future studies to
evaluate PSM.
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