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www.jku.at

DVR 0093696

Probabilistic

Software Modeling

Doctoral Thesis

to obtain the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften





Abstract

Software Engineering and the art of building computer programs is a complex endeavor.
A program runs through various stages of maturity from the start of its inception to
the end of its lifecycle. This means that, more than once, a program inevitably be
in an actual or apparent non-deterministic state that the developers never expected.
This non-determinism may arise from technical limitations such as distributed systems
or parallel computing. Apparent non-determinism may arise from, for example, the
complexity of the programs reaching the cognitive limits of their engineers. Modern
software engineering has many methods, processes, guidelines, and strategies to limit
the potential quality problems that are involved with any form of non-determinism
or undefined behavior. This includes testing during development, staging, and rollout
strategies during deployment and observability patterns in the live environment. An
important consensus among software engineering practitioners is that the later a bug,
unknown behavior, and unnecessary complexity are removed the more expensive it gets to
resolve. This thesis introduces Probabilistic Software Modeling (PSM), a novel modeling
paradigm for software. PSM complements existing methods via a model that can simulate
and evaluate programs on a semantic level. PSM transforms a given program into a
probabilistic model by extracting its structure and runtime behavior. The probabilistic
model acts as a copy of the original program and allows for simulation and probabilistic
quantification of program states and execution traces. This enables one to build various
comprehension, predictive, and generative applications on top. This thesis presents the
theoretical foundation on PSM and how a program can be transformed into a probabilistic
model. Then the theory is then evaluated in the context of a feasibility study evaluating
the scalability and applicability of PSM. A study on code clones provides insights into
the different types of code clones acting as a primer for semantic clone detection via PSM.
Then we give an outlook on how fault localization via PSM can be accomplished. Finally,
a study on the PSM program representation shows the usefulness of graph databases
in the context of static code analysis. The presented studies show a potent framework
for future program analysis and simulation. This includes state-of-art semantic clone
detection performance and precise fault localization results.





Kurzfassung

Software Engineering und die Kunst Computerprogramme zu planen und zu imple-
mentieren ist ein komplexes Unterfangen. Ein Programm durchläuft, von der initialen
Idee bis hin zum Ende des Lebenszyklusses verschiedenste Qualitätstadien. Während
diesem Lebenszyklusses, ist das Programm mehrmals in einem echten oder scheinbaren
nichtdeterministischen Zustand. Echter Nichtdeterminismus ensteht durch technische
Gegebenheit, wie zum Beispiel verteilte Systeme oder Nebenläufigkeit. Scheinbarer Nicht-
determinismus entsteht durch die steigende komplexität von Programmen, welche die
kognitiven Grenzen der Ingineure sprengen. Die moderne Softwareentwicklung hat viele
Methoden, Prozesse, Richtlinien, und Strategien um die Auswirkungen von undefiniertem
Verhalten einzugrenzen. Dies inkludiert Software Testen, Staging und inkrementelle
Releases, sowie Überwachungskonzepte der aktiven Laufzeitumgebung. Ein wichtiger
konsensus unter Software Ingenieure ist, je später ein Fehler, ein unerwartetes Verhal-
ten, oder unnötige Komplexität gelöst wird, desto teuer wird die Korrektur. Diese
Dissertation führt Probabilistic Software Modeling (PSM) ein. PSM ist ein neues mode-
lierungs Paradigma welches bestehende Methoden mittels Simulation und Evaluierung
von Programmen komplementiert. Durch die Extraktion der Programmstruktur und
dem Laufzeitverhalten, transformiert PSM ein gegebenes Programm in ein probabilis-
tisches Model. Dieses Model representiert eine (probabilistische) Kopie des originalen
Programmes und erlaubt die Simulation, sowie die probabilistische Quantifizierung von
Programzuständen und Ausführungspfaden. Dies ermöglicht unterschiedlichste verständis,
prädiktive, und generative Applikationen. Diese Arbeit beinhaltet das theoretische Fun-
dament zu PSM und wie Programme in probabilistische Modelle transformiert werden
können. Eine Machbarkeitsstudie evaluiert dann die Skalierbarkeit und Anwendbarkeit
der theoretischen Konzepte von PSM. Eine Studie zur Detektion von Code duplikaten
liefert dann wichtige Einblicke zu den verschiedensten Typen von Klonen, und bereitet
das Fundament für die automatische Detektion von semantischen Klonen mittels PSM.
Danach gibt eine Studie einen Ausblick auf die Fehlerfindung mittels PSM. Zum Schluss,
zeigt eine Studie die Nützlichkeit von Graphdatenbanken für die statische Codeanalyse
auf. Die präsentierten Studien zeigen das PSM ein potentes Framework für die Program
Analyse und Simulation werden kann. Dies inkludiert state-of-art Detektoren zum finden
von semantischen Codeduplizierungen und präzise Resultate in der automatischen Fehler
lokalisierung.
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1 Introduction

Software Engineering and the art of building computer programs is a long and complex
endeavor. A program runs through various stages of maturity from the start of eliciting
the requirements until the end of its lifecycle. Looking at this broad spectrum of
maturity of a non-trivial system, it becomes clear that medium to large scale software
does not always behave as deterministic as developers wish it to be. There are two
different types of non-determinism: actual and apparent non-determinism [4]. Actual non-
determinism is the theoretical concept of undefined state transitions in a program. Actual
non-determinism can arise from pure technical limitations, e.g., distributed systems,
concurrency, or input-output communication. Apparent non-determinism is the practical
concept of unknown state transition in a program caused by underspecification, cognitive
limits, limits in observability, or system complexity. Both forms of non-determinism
become of increasing importance in a world full of, e.g., distributed micro-services that
interact with AI systems spanning the globe.

State-of-art systems use a range of development procedures (e.g., agile development),
testing approaches (e.g., unit, integration, monkey testing), staging and deployment
strategies, and monitoring and observability patterns. All of these methods are associated
with increasing the initial software quality, i.e., the reduction of the impact radius of
faults, and the observability of faults in a running system. Important in this context is
that the earlier the system’s actual and apparent non-determinism is tackled, the more
robust and cost-effective can the system be developed and operated.

This thesis focuses on Probabilistic Software Modeling (PSM) a modeling paradigm
for programs that complements all the aforementioned development procedures. PSM
transforms a given program, i.e., a system or subsystem, into a probabilistic model that
allows for simulation and the probabilistic quantification of program states and execution
traces. The probabilistic model is a reflection of the original program including essential
program elements like types, functions, and fields. PSM acts similar to a compiler that
compiles source code into machine code, in that it takes a program and transforms it into
its probabilistic equivalent. The resulting probabilistic model can visualize or simulate
the runtime behavior of functions or variables and evaluate the likelihood of these.

Companies and developers may further improve the software quality and reduce the
fault impact by leveraging the generative and evaluative capabilities of a probabilistic
model. The model may simulate complex system to system integrations before fully
implementing the integration. It can aid during fault localization processes that are
hard to debug. It can help in comprehending legacy system and their behavior during
their maintenance or redevelopment. It can bridge the gap between AI components and
traditional software components by evaluating their compatibility. A final example, the
model can generate tests for unlikely states in a subsystem. While many listed examples



1.1 Research Questions

are still future research, some use-cases can already be solved by the foundation laid in
this thesis.

1.1 Research Questions

The overarching research questions in this thesis are as follows.

RQ1 Can programs be transformed into an equivalent probabilistic model?

RQ1.1 Can the probabilistic model preserve the structural properties of the modeled
program?

RQ1.2 Can the probabilistic model preserve the behavioral properties of the modeled
program?

RQ2 Can the transformation between programs and its probabilistic equivalent scale to
a given computation horizon?

RQ3 Can the resulting probabilistic model aid in software engineering tasks?

RQ1 provides answers on whether a program can be transformed into a probabilistic
model. RQ1.1 and RQ1.2 provides answers whether this transformation preserves the
main properties of the program. Each of the aforementioned questions are linked to the
viability of PSM. RQ2 provides answers whether the transformation can be scaled up to a
specific computational horizon. The computational horizon depends on the target use
case the model is build for. For example, generating integration tests between systems
has a different timelines than aiding developers in their fault localization tasks. While the
test generation might have a horizon of several days without loosing usefulness, waiting
for a model for couple of days to debug a specific fault may not be tolerable. However,
a basic computational horizon is still given, in that the generation of the model may
complete within hours at most days. Finally, RQ3 answers whether the transformed
model is useful in the context of software engineering. While these research questions
may take years after publishing this thesis to be fully answered, a clear lookout within
the context of this academic research is viable.

Any solution provided to these questions is constraint by the following requirements:

1. Structural closeness between the internal structure of the program and the model;

2. Behavioral closeness between the runtime dynamics of the program and the behavior
of model;

3. Generative capabilities of the resulting model;

4. Evaluation capabilities of the resulting model.

Structural closeness states that the program and the resulting model share a common
structure. This requirement guarantees that any solution does not diverge too far from the
original structure of the program. Extreme divergences in structure between the program
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1.2 Motivating Applications

and model increase the cognitive load needed to work with the model. Behavioral closeness
states that the program and its associated model share a common behavior. Similar to
structural closeness, behavioral closeness avoids additional overload in understanding the
model. Generative capabilities states that the model may (partially) generate the original
behavior. The goal of the thesis is to construct a methodology to generate an actionable
model that the developers can interact with. Evaluation capabilities states that the model
is able to quantify aspects of the program’s behavior. This requirement guarantees the
analysis capabilities of any resulting PSM solution. The requirements limit the space of
the potential solution to a subset we deem useful in the problem context mentioned in
the introduction. However, these requirements are limitations we oppose on ourselves
and do not necessarily apply to research on PSM outside the context of this thesis.

1.2 Motivating Applications

PSM is a generic framework that enables a wide range of predictive and generative
applications. This section lists a selection of possible applications. Some applications are
presented later in the work in greater detail while others are ideas based on the results of
the evaluated applications.

1.2.1 Predictive Applications

Predictive applications seek to quantify, visualize, infer and predict the behavior and
quality of a system.

Visualization and Comprehension [5, 6, 7] helps to understand programs and their
behavior. This includes the visualization of code elements and non-functional attributes
such as memory consumption. The PM is the source of the visualization showing the global
and conditional behavior across code elements. For example, Figure 4.2 visualizes the
height-property marginally and conditionally given that only females use the nutrition
advisor (P (Height | Gender = Female)).

Integrity & Compatibility Evaluation quantify the consistency between and within
software components by measuring the behavioral divergence between the components.
The divergence represents the likelihood that modules can successfully interact with each
other. Integrity measures the divergence between two software components that depend
on each other. Compatibility measures the divergence between the same component
over revisions. Both measures are targeted for behavioral difference extending existing
methods that are based on static descriptive measures such as the cyclomatic complexity
[8]. For example, a change of units from kg to pounds for Person.weight yields the same
shape of distribution but on a different scale. The compatibility evaluation would result
in a low score between the two versions because of the shift in behavior (e.g., between
revisions of Person.weight). The integrity evaluation would also result in a low score
for methods that read the newly altered weight values (e.g., advice-method).

Semantic Clone-Detection [3, 9, 10] detects methods that are syntactically but
exhibit similar runtime behavior. For example, the iterative and recursive implementation
of the factorial computation. Both yield the same input and output behavior while the

8



1.3 Outline

underlying source code is different. These types of clones are beyond traditional clone
detectors that focus on static properties (e.g., sequence of tokens or the abstract syntax
tree). PSM can detect semantic clones by comparing the likelihood of between methods
and their model representations. Hence, the likelihood acts as a distance metric while
significance tests such as the Generalized Likelihood Ratio Test [11] (GLRT) allow for a
final decision.

Fault Localization [12, 13] finds the most likely location of a fault in a program.
Faults may be detected within or between revisions of a program. PSM uses the same
principles as semantic clone detection to find these faults. This process can be guided via
existing tests to decide on the type of change, i.e., whether it was an error or an expected
change. PSM can also generate the error path describing all methods that diverged and
the effect it has on neighboring systems.

Anomaly Detection [14, 15, 16, 17] applications measure the divergence between a
persisted PSM model and observations collected form a live system. These applications
can be deployed into a live system, in which components are monitored and checked
against their models. Again, the GLRT can check for runtime observations that diverge
too far from the model and trigger additional actions. These actions can be a notification
to human operators, generate reports, or apply temporary defense actions such as
subsystem suspensions.

1.2.2 Generative Applications

Generative applications leverage observations drawn from the models, e.g., method inputs
or field values.

Test-Case Generation [18, 19] applications draw observations from the model for
methods and fields to generate test data. The test data can be tailored regarding a
specific likelihood resulting, e.g., test suites such as typical, rare, edge. A typical test-suite
would be triggered on the average runtime inputs, while rare and edge cases would be
triggered with observations with relatively low or nearly zero likelihoods. In addition, it
is possible to provide specific conditions to test case generation, e.g., that only females
use the nutrition advisor services. This allows the generated test-suites to have large
semantic coverage instead of code coverage.

Simulations sample execution traces from the PM in a structured fashion to reproduce
the running system. This probabilistically executes the original program without actually
running it. Simulations can bridge boundaries between hardware and software interfaces,
reducing the number of hardware dependencies during development.

1.3 Outline

The thesis is organized as follows. Chapter 1 introduces the topic of PSM, provides
motivating application examples, and frames the research goals of the thesis. Section 1.2
potential applications that can be solved via PSM as additional motivation. Chapter 2
introduces the running example used throughout the thesis. Chapter 3 provides the
needed background to understand the concepts in the thesis. Section 3.1 provides the
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1.3 Outline

background on the software engineering aspects, while Section 3.2 provides the background
on probabilistic modeling. Sections 3.2.1 to 3.2.3 introduces various probabilistic models
by example and maybe skipped by readers familiar with the topic. Chapter 4 introduces
the main contribution of this thesis and the methods involved with PSM. The methods
are split into code (Section 4.1), runtime (Section 4.2), modeling (Section 4.3), and
inference (Section 4.4). Each explaining the theoretical aspects of PSM. Chapter 5
provides a feasibility study on PSM. Chapter 6 contains a study on code clones which
motivated the study on semantic clone detection in Chapter 7. Chapter 7 represents the
first realized PSM use-case with important concepts on comparing programs and their
associated models on a behavioral level. Chapter 8 builds on top of the concepts gained
from Chapter 7 to outline the use-case of fault localization. Chapter 9 contains a case
study on the benefits and strength of graph databases that were used for the structural
representations of PSM. Chapter 10 provides the conclusions on PSM and the research
questions provided in Section 1.1. Chapter 11 concludes the thesis and outlines potential
future research directions.
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Table 2.1: The runtime observations of the Nutrition Advisor. Each row represents the
observations of one request.

Height Weight Bmi Advice Gender
Advice
encoded

Gender
encoded

1 174.30 90.00 29.62 Consider skipping the meal. Male 2 0

2 157.80 97.60 39.19 Please do not eat me! Female 5 1

3 159.10 69.80 27.57 Consider skipping the meal. Female 2 1

4 172.60 70.10 23.53 Your are good, eat if you want. Male 1 0

5 172.80 63.60 21.29 Your are good, eat if you want. Male 1 0

1 class NutritionAdvisor {

2 BmiService bmiService = new BmiService ()

3

4 String advise ( Person person ){

5 float bmi = bmiService .bmi( person .height , person . weight )

6

7 String advice ;

8 if (bmi <= 18.5) {

9 advice = "Do not stop eating !";

10 } else if (18.5 < bmi && bmi <= 25) {

11 advice = "Your are good , eat if you want.";

12 } else if (25 < bmi && bmi <= 30) {

13 advice = " Consider skipping the meal.";

14 } else if (30 < bmi && bmi <= 35) {

15 advice = " Hungry again?";

16 } else if (35 < bmi && bmi <= 39) {

17 advice = "Do not eat!";

18 } else {

19 advice = " Please do not eat me!";

20 }

21

22 return advice ;

23 }

24 }

Listing 2.2: advise of the Nutrition Advisor.

1 public class BmiService {

2 float bmi(float height , float weight ) {

3 float heightInMeters = height / 100;

4

5 return weight / ( heightInMeters * heightInMeters );

6 }

7 }

Listing 2.3: bmi of the Nutrition Advisor

The observed data in the Nutrition Advisor is given by Table 2.1. The columns map
to the key variables of the Nutrition Advisors that represent the inputs and outputs of
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the three main methods.
The rows show 5 of the total 1000 observations each representing a request to the

nutrition advisor. Each row was created by intercepting calls to the methods and tracking
their values. All variables are central to the Nutrition Advisor’s behavior except for
Gender. Advice encoded and Gender encoded represent the numerical encoding of their
textual original.

Figure 2.3 shows the pair-wise plots of all variables. Height, Weight, and Bmi resemble
a Normal distribution with strong linear relationships among them (except for Height
and Bmi). Gender shows a slight imbalance towards males. The Advice has a monotonic
relationship with Bmi.

The requests made to the Nutrition Advisor are based on the NHANES [20] data.
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3 Background

Probabilistic Software Modeling (PSM) lives in the intersection of software engineering
and probabilistic modeling. Understanding the basics from each domain is essential
in understanding the concepts of PSM. Basic methods from static and dynamic code
analysis [21] and general knowledge of programs and programming are needed for the
software engineering part. Bayesian methods, statistics, and modern density estimation
based on normalization flows are required for the probabilistic modeling part.

3.1 Software Engineering

Software Engineering is a broad term capturing everything related to the design, imple-
mentation, testing, and analysis of software. In the context of PSM, we will focus on
the analysis of programs. More specifically, the properties of the source code, and its
runtime behavior.

3.1.1 Code

PSM is interested in the structure of a program in form of a graph. This structure is
extracted via static code analysis. Static Code Analysis describes any analysis of the
source code of a program without executing it. In most static analysis applications, first,
an abstract syntax tree is extracted, and then an abstract semantics graph is generated
from it.

An Abstract Syntax Tree (AST) describes the syntactic structure of the textual
representation of a program in form of a tree. The nodes of an AST are programming
constructs. For example, while represents a loop construct. The edges describe a consists-
of relation of the textual fragment. For example, statement sequence has a while as
child, which in case has an if-else branch as child. ASTs are a low-level representation
of the source code. Hence, they do not contain any typing information of variables, or
values that are returned by methods. This information is constructed from the AST in a
separate transformation step.

An Abstract Semantics Graph (ASG) is a concise but more complex representation of a
program that operates on a higher level than an AST. An ASG is constructed from AST
by adding semantic nodes and dependencies while removing purely syntactic nodes. The
main difference is that an ASG is a graph that represents the semantic representation
of a program. For example, call dependencies between methods or typing information
of variables. This semantic view of the program allows for code refactorings and code
optimizations. PSM has its own ASG with which it represents the structure of programs
and that we will introduce in later chapters.



3.2 Probabilistic Modeling

3.1.2 Runtime

PSM needs information on how the elements of a program interact at runtime. The
resulting model should have the same behavior as the program in order to enable
simulations and inference. This information is extracted via dynamic code analysis.
Dynamic code analysis [21] is the process of observing a running program.

The program is executed by a trigger (parameters and environment) which is the
context of the monitoring session. A running program spawns event streams which are
sequences of monitoring events (e.g., Figure 2.2). These events contain information on
which fields have been changed or methods were invoked. There are two types of runtime
monitoring: tracing and sampling. Tracing tracks every possible event at runtime, e.g.,
every access to a predefined field. This results in a full runtime event stream tracking
the full unaltered behavior of a program. However, tracing produces large amounts of
data and may lead to performance issues. In contrast, Sampling records events according
to a specific rate. The resulting event stream is not complete and only depicts parts of
the program’s behavior. However, the performance impact can be controlled.

Runtime monitoring is realized by changing the bytecode (e.g., the Java bytecode)
of the underlying program. This may happen during the program compilation where a
specialized compiler inserts monitoring instructions into the code (e.g., AspectJ compiler
[22]) A specialized compiler can be used to add runtime monitoring instructions at
compile time. Another approach is to defer the modification to the actual program
runtime in a lazy fashion. In this case, specialized class loaders modify the program as
the code is linked. Examples of tools or libraries with which runtime monitoring can be
realized are AspectJ, CGLib, or ASM. Aspectj is a full tool-suite including a separate
compiler to weave in monitoring aspects (small portions of programs). CGLib and ASM
are bytecode manipulation libraries with which runtime monitoring can be implemented
manually.

3.2 Probabilistic Modeling

A probabilistic model uses the theory of probability to model a complex system (e.g.,
Nutrition Advisor). The term probability can be associated with the degree of belief we
have that a specific event happens. All known events span a space of outcomes which is
denoted by Ω. For example, the event space of a Person.gender is Ω = {male, female}
and of Person.height it might be Ω = {x | x ∼ N (178, 2)}. "∼" is the sample operator
(different from sampling in Section 3.1.2) where the left-hand side is drawn from a
distribution that is described on the right-hand side. A probability distribution P is a
mapping from events in the system to real values. For example, P (Person.gender) =
{female 7→ 0.5,male 7→ 0.5} describes probability mappings of all events associated with
gender. These values are between 0 and 1 and all values sum up to 1. Attributes over
events are called Random Variables (RVs), e.g., gender is an attribute of a person. This
notion has parallels to fields in software engineering which are also often called attributes
in that they describe a specific aspect of an object. Therefore, a random variable Xi ∈ X
(e.g., Weight) captures an aspect of the system’s event space (or outcomes). They allow
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for simpler notations of outcomes by, e.g., P (Weight > 80) captures all events where
the random variable (or attribute) of a person is greater than 80. The value range
of random variables is given by V al(Xi) (e.g., V al(Gender) = {female,male}). The
marginal distribution P (Xi) describes the probability distribution over the events of a
random variable Xi. For example, P (Gender = female) = 0.5;P (Gender = male) = 0.5
describes the marginal distribution of gender. The joint distribution P (X1, . . . , Xn)
represents the probability distribution of multiple random variables in conjunction, e.g.,
P (Gender, Color). For example, P (Gender = male, Color = Green) = 0.35 describes
the event that a male likes the color green. A conditional distribution P (X | Y ) describes
the probability distribution of X given some additional information of the random variable
Y is known. For example, P (Gender = male | Color = Green) describes the probability
that gender is male while observing that the favorite color is green. The additional
information that the color is green changes the degree of belief one has that the person is
a male or a female. PSM captures the space of runtime events via probabilistic quantities
described above to reason about the likelihood of specific events or to generate events
according to a likelihood. More background information is given, e.g., by Koller and
Friedman [23], Murphy [24], or Bishop [25].

The following sections present the background of the theoretical foundations of PSM
by exploring classical Bayesian analysis (??), Factor Graphs, Cluster Graphs, and
Normalizing Flows. Bayesian analysis provides a holistic approach to model data as
a generative process. A factor graph also models a generative process. In contrast to
a Bayesian network used in Bayesian analysis, it is an undirected graph. A cluster
graph, similar to a factor graph, is omnidirectional but captures clusters of variables.
Normalizing flows, in contrast, are multivariate density estimators that PSM uses to
model clusters in the cluster graphs.

Probabilistic analysis can be organized in the Box analysis loop [26]. The process of
the Box’s loop can be summarized as follows

1. Gather data from real-world phenomena

2. Build a probabilistic model of the phenomena

3. Infer hidden quantities of the model via the gathered data

4. Criticize the model given the gathered data

5. Repeat Step 2 – 4 until the required quality is reached

For PSM, Step 1 is captured via runtime monitoring. Step 2, are transformations
between the programs AST to an ASG and finally to a factor and cluster graph. Step 3 is
represented by optimization of the NVPs that represent the clusters. Step 4 is measuring
the convergence of the optimization process but also executing inference checks. Step
5 is not performed in the context of PSM. The underlying probabilistic structure is
known from the program’s graph and any change to its structure would break the PSM
requirements.
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3.2.1 Bayesian Modeling

A Bayesian Network [23] is a graph representation of a joint probability distribution over
a set of random variables with their dependencies. More precise, it is a Directed Acyclic
Graph (DAG) where nodes represent random variables. The edges represent dependencies
between the variables. The acyclic and directed nature of the graph allows for efficient
operations over the random variables, e.g., sampling the marginal joint distribution that
the graph represents. Furthermore, the factorization into the graph structure and its
variables (i.e., nodes) reduce the amount of data that needs to be gathered and stored
significantly.

More formally, a Bayesian Network is a directed acyclical graph defined over

BN = (V ,E).

The nodes V are random variables V ∈ X . Edges E represent dependence between
random variables that allow easier evaluation of conditional independence between the
variables. The network itself is the global representation of how variables depend on
each other. In addition, there is a local representation of the variables themselves. For
example, a random variable height may be represented via a Gaussian distribution with
mean µ and variance σ2 with N (µ;σ2). N would be the local model within the Bayesian
network. At this point, we will refer to Koller [23] for further reading. There are many
concepts, proofs, and usage patterns (exact versus approximate inference) that exceed
the limits of this chapter but are worth reading.

Given now the Nutrition Advisor, the goal is to define a Bayesian Network representing
the joint distribution of all key variables in the program.

P (Height,Weight,Bmi,Advice,Gender).

For this we will employ approximate inference for continuous random variables in Bayesian
networks. To ease the computations, we will use PyMC3 [27], a probabilistic programming
framework for Python [28] that provides practitioners with a toolbox of inference methods.

In the first iteration of the modeling procedure, we focus on the bmi()-method. The
goal is to find a variable dependency structure that represents

P (Height,Weight,Bmi).

The variables are Height, Weight, and Bmi which are the two input parameters and the
return value. Listing 2.3 shows that the BMI is computed by normalizing the weight
by the squared height. Table 2.1 shows example values while Figure 2.3 visualizes the
distribution of the variables. The histograms of Height, Weight, and Bmi show multi-
modal Gaussian-like distributions. This fits the intuition of the variables. Figure 3.1
shows the Bayesian model in the Kruschke [29] notation. Variables with names and
filled distributions are observed and are present in the dataset (height, weight, and
bmi). Hollow distributions (e.g., µheight or σweight) represent latent variables, i.e., hidden
variables that we want to estimate as they allow us to generate data for observed variables.
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Both, Height and Weight are modeled via normal distributions. The mean µ is a
latent, i.e., hidden variable modeled via a normal distribution. Similarly, the variance
σ is modeled via an exponential distribution. The bmi is also modeled via a normal
distribution with its mean being a deterministic function that represents the bmi. In
this example, we decided to model height and weight fully factorized without its linear
relationship that we can see in Figure 2.3. This reflects real-world situations in which
not all variables and interactions are known by the modeling expert.

Modeling the bmi-method

The model in Figure 3.1 is already capable of generating data. The variables along with
their distributions and dependence structure define a full generative process. Figure 3.2
shows the prior distribution, i.e., the data generated by the model without looking at the
real data. Observed variables represent the true data similar to Figure 2.3. Each prior
predictive represents one example distribution of the variables where the mean prior
predictive is the mean across the distributions. This means, e.g., for the Height variable,
that we first draw µheight0 and σheight0 from the latent variables. Then we sample from the

observed variables N height
0 (µheight0 , σheight0 ). This is called forward sampling representing

the chain rule

P (X1, . . . , Xn) =
n∏

i

P (Xi | PaGXi), (3.1)

where we sample first from the parents and then from the children to sample from the
joint distribution of all variables [23].

Approximate inference [23] and the data from the observed variables can be used to
optimize the parameters of the latent variables. Figure 3.3 shows the posterior predictive
plots with optimized parameters. The fit converged closely to the observed data with
some errors caused by the full factorization between height and weight. Figure 3.4 shows
the trace plots for the inference process. The left plots show the distribution plots of the
estimated hidden variables. The right plots are trace plots showing the random walk of
finding the variables. Structures or lines in the trace plots hint that the inference process
diverged. Figure 3.5 shows the estimated distribution with the 94 % Highest Density
Interval (HDI). The HDI represents the level at which most of the density is concentrated
and should be interpreted as "water level" within a distribution. Furthermore, the plots
contain the mean of the estimated hidden variables where the mean-variance in height
and weight is 10.

In conclusion, we can state that modeling allows for some structural freedom that can
be traded with model precision. Further, we estimate the hidden variables of the observed
variables. The model is a generative process even without optimizing the parameters,
however with suboptimal predictive power.

Modeling the advice-method

In this section, we will extend the model from above by the advice from the advice

function. Similar to before, we start by modeling the underlying process. Figure 3.6
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clusters). These factors can be represented via local probabilistic models like Conditional
Probability Tables (CPD). CPDs are a tabular representation of discrete random values,
e.g., gender with its values female and male, along with their probability in a given
modeling setting.

PSM uses flow-based density estimators to approximate the local joint distribution of
factors. For example, of the factor representing the bmi method with its variables height,

weight and bmi. More concrete, it uses Non-Volume Preserving Transformations (NVPs)
[30, 31] as local probabilistic models and cluster graphs as their global probabilistic data
structure.

Architecture

NVPs are latent-variable density estimators that allow efficient inference, sampling, and
likelihood estimation of samples. NVPs learn a deterministic bijective function f : X 7→ Z
(with g = f−1) that map the original input variable x ∈ X to simpler latent variables
z ∈ Z. This mapping is motivated via the change of variable theorem

pX(x) = pZ (f(x))

∣∣∣∣det

(
∂f(x)

∂xT

)∣∣∣∣ (3.3)

where ∂f(x)
∂xT is the Jacobian of f at x. The latent variables Z are often isotropic unit

norm Gaussian N(0,1) that are well understood in terms of sampling and likelihood
evaluation. The flow learns the mapping between observed and latent variables but also
how these variables depend on each other. Hence, the latent space is fully factorized
alleviating the need of a covariance matrix in the latent Gaussian space. Figure 3.12
shows the probabilistic representation of the NVP of the bmi()-method. The observed
variables height, weight, and bmi form a factor that is transformed by the deterministic
flow into the latent factor. The latent variables are unit Gaussians, one for each observed
variable.

NVPs can approximate complex high-dimensional data (e.g., images) even with small
datasets [30] NVPs are build up by stacking multiple neural networks and combining them
via flow modulation operators. These operators are scale and location transformations of
the input data. While the transformations are simple by themselves, the combination
of multiple layers of these allows the NVPs to approximate complicated multi-modal
distributions. These transformation layers are called coupling layers. Figure 3.13 shows
the coupling layer in its forward and inverse direction. x represents the input vector to a
coupling layer with x1 and x2 being the left and right half of the input vector. The left
half of the input, i.e., x1, is propagated as output y1 without any change. The right half,
i.e., x2, of the vector is scaled and translated with the left half and produces the new right
output y2. The coupling layers alternate the transformation between the left and right
half of the input which yielding a fully transformed x. The reverse propagation inverts
the forward propagation by re-scaling and translating it back. The simplicity of the
transformation makes the coupling layer invertible and differentiable. Furthermore, the
Jacobian determinant can be efficiently computed by transforming only half of the input
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4. Finally, the gradient regarding the condition and the generated sample is computed,
and the latent observations are adapted accordingly.

Throughout the iterative process, the NVP acts as a deterministic function between x
and z. Hence, the parameters of the NVP are immutable and not changed during the
optimization. Only the N latent observations z are updated during the back propagation
of the loss L(Ck,Xk). Intuitively, we start with the marginal distribution of the NVP,
reshaping it until it converges given our constraint c. The optimization itself is very
stable and reaches convergence in few iterations as only z with N samples are optimized.
This conditioning process can also be thought of as a data imputation process where c
acts as a constraint on the imputed data.

Likelihood Evaluation

The likelihood evaluation is the process of finding the likelihood of a sample under a given
NVP. For example, p(height = 178, weight = 80, bmi = 23) denotes the likelihood of the
bmi-method being called with 178 cm, 80 kg and returning a BMI of 23. The process
itself is the same procedure as one forward path during the parameter optimization.

1. Given a sample x for which log(pX(x)) should be computed.

2. Transform the observed sample into its latent representation z = f(x).

3. Evaluate the log-likelihood via Equation (3.4).
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extracts a Behavior Graph (3) (BG). The BG contains the event streams with events
that represent, e.g., reading a value from a field.

The static and dynamic information is the foundation of the Modeling phase. The
result of the Modeling phase is an Inference Graph that mirrors the structure and runtime
behavior of the program. First, the structure graph is transformed into Inference Graph
(3) capturing the global structure and dependencies between variables that map to code
elements. Then, the event streams are transformed into a tabular format by tallying the
stream and imputing missing data called Behavioral Datasets (5). Each local model, i.e.,
each node in the inference graph, is optimized with the behavioral datasets to learn the
original behavior of the program (6). The final result is the inference graph with the
global structure reflecting the SG and the optimized local model reflecting the behavior
of each code element (7).

The inference graph can then be used to create various applications (see Section 1.2).
These applications are realized via Causal Reasoning. Forward Reasoning (8) starts
with an upstream method and searches for the resulting effect in downstream methods.
Backward Reasoning (9) starts with a downstream method and searches for the causing
state in an upstream method. All the causal reasoning is built on top of the generative
capabilities (10) and the possibility to evaluate the likelihood (11) of events.

4.1 Code

1 float bmi( float h, float w){

2 float hm = h / 100;

3 return w / (hm * hm)

4 }

Listing 4.1: Implementation of the BMI computation.

PSM extracts the Structure Graph from the Source Code (1) via static code analysis.
First, an AST is constructed from the source code. Then, the AST is transformed into a
Structure Graph (SG). An SG is an abstract semantics graph that represents high-level
abstract concepts that PSM will model in later stages.

Figure 4.3 shows the meta-model of a structure graph with its code elements and their
relationships (left). Types T , properties Pr, executables Ex, parameters Pa, and results
Re refer to classes, fields, methods, method parameters, and method return values, e.g.,
in Java [32]. Types and executables are compositional elements representing a collection
of atomic elements. Properties, parameters, and results are atomic code elements that
have identifiable states at runtime. The structural relationship for compositional elements
is that they declare code elements. For example, types declare executables and properties,
or executables declare parameters and results. The structural relationship for atomic
elements is an instance of relationship to a given type. The behavioral relationships center
around executables and describe the interactions with other code elements. Executables
receive parameters PaI , read properties PrI , and request invocation results ReI , which
describe its Inputs I. Executables return results ReO, write properties PrO, and provide
parameters PaO, which describe its Outputs O.
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for behavioral relationships with

s0, . . . s3 . . .declares

s4, . . . s6 . . .instance of

b0 . . .invokes

b1, b2 . . .reads, writes

b3, b4 . . .receives, provides

b5, b6 . . .requests, returns.

The nodes C are called the code elements, the edges s0 . . . s6 ∈ R are called structural
relationships, and edges b0 . . . b6 ∈ R are called behavioral relationships. ϕ is the incident
function connecting nodes. ϕ for S also defines the possible cardinalities similar to the
Unified Modeling Language [33] for the source and target nodes. Further, we define < as
the instance of operator. For example, person < Pr describes that person is an instance
of a parameter. S describes the meta-model of structure graphs Ŝ that is extracted
from an AST. Given the meta-model of a structure graph, the transformation from an
AST to an SG is a simple exercise. Tools like Spoon [34] can simplify the SG generation
substantially and do not need any further elaboration.

PSM focuses on code elements. Therefore, a concise notation is beneficial in the later
chapters. Atomic elements are denoted in lowercase while compositional in boldface
lowercase, e.g., h and bmi in Listing 4.1. Results have the name of their executables,
e.g., bmi in Listing 4.1. bmi = {hPa,I , wPa,I , bmiRe,O} denotes the code elements of
Listing 4.1. We will omit the superscript classifiers if it is unambiguously possible, e.g.,
bmi = {h,w, bmi}. bmiI = {h,w} and bmiO = {bmi} describes the subset of inputs
and outputs. Finally, we define the symbol function symbol(·) that returns a numeric
identifier for each code element, e.g., symbol(bmi) = 0.

Figure 4.7 (top) shows the ASG of the Nutrition Advisor. It includes the types Servlet,
NutritionAdvisor, BmiService, Person, and the executables handle, advice, bmi,
init. init is the constructor of the Person type. Furthermore, all atomic code elements
are shown with their interdependencies. Note that most of the structural relationships
are omitted in Figure 4.7 for visual simplicity.

Constructing the ASG does not need any further explanation. There are many libraries
that construct a general-purpose ASG from which to start (e.g., Spoon for Java [34]).

4.1.1 Model Universe

The Model Universe (MU) describes which code elements from the program are captured
by the IG. Each code element in the MU is considered during runtime monitoring, dataset
creation, and in the IG. The selection of code elements is limited by four factors: the
users, technical and legal reachability, and PSM type system. Users might limit the
MU if they are only interested in a subset of the program. The technical reachability
limits the MU to elements that can be statically analyzed and monitored at runtime.
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Table 4.1: Compatibility matrix of Java to PSM data-types. * refers to iterable types
like ArrayList in Java. <any> refers to any other type not mentioned in the
table.

void(s) int(s) float(s) text(s) reference(s) unknown(s)

void(∗) ✗

short(∗) ✗

boolean(∗) ✗

byte(∗) ✗

short(∗) ✗

integer(∗) ✗

long(∗) ✗

float(∗) ✗

double(∗) ✗

char(∗) ✗

String(∗) ✗

<any>(∗) ✗ ✗

For example, intercepting calls to JDK system libraries might be prohibited by Java
Virtual Machine (JVM) [35] for security reasons. The legal reachability limits the MU to
elements for which static and dynamic analysis is legally allowed. For example, analyzing
third-party libraries might be illegal given their license. Finally, the PSM type system
limits the MU to data types that can be represented via a probabilistic model. In general,
PSM models numbers and text or any coercible data type. Table 4.1 contains the most
essential data type mappings implemented in the PSM prototype that runs on the JVM.
Any number or boolean is mapped to integers. Any floating-point number is mapped
to floats. Any string-like is mapped to text. Any other type is either a reference, i.e., a
complex type, or unknown to the system.

Any code element in the meta-model (see Figure 4.3) can be added to the MU given
the aforementioned constraints. Atomic code elements are directly added to the MU.
Compositional elements are added by adding the element itself, and recursively all
direct atomic children, e.g., adding the Person will add all the properties and methods
declared via Person. Adding code elements in a PSM prototype implementation equates
to annotating code elements, e.g., annotating a field in a class, with @GradientModel.
Alternatively, all included and excluded code elements can be described by a list of
regular expressions.
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4.2 Runtime

PSM extracts the Behavior Graph (3, see Figure 4.1) via dynamic code analysis [21, 36].
The program is instrumented and executed via a trigger resulting in a stream of runtime
events. The instrumentation tracks predefined program execution points, e.g., executable
invocations or property accesses. The trigger is the program input and any initial state
that is configured to run the program, e.g., test-suites, system tests, or program execution.
The resulting event streams are directed acyclic graphs of events similar to the sequence
diagram Figure 2.2.

The SG defines the structure of the IG. The BG defines the behavior, or the dynamic
aspect, of the IG. Without the information of the BG the IG would operate solely on the
prior knowledge similar to the example in Figure 3.2. Hence, SG and BG are essential in
finding an usable and useful IG.
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element is in the MU.
If both source and target code elements are in the MU, then all interactions have to be

instrumented to capture the entire behavior. It is still important to model the external
target element in many cases even if only the source element is in the MU. For example,
a function might not return the result but push it into an object that is an instance of a
type that does not reside in the MU (e.g., an output stream). To enable full inference
with the IG from program input to output one would still need to understand the input
parameters of the output stream method. However, there are cases where the external
target element is not of interest. In this case, it is useful for the PSM implementation to
provide a facility to exclude these elements from the MU to reduce the resource demand
and model dimensionality.

4.2.2 Program Triggers

Most programs need to be triggered to expose runtime behavior. The trigger might
be provided at the start of the program, e.g., a compiler is triggered with a text file
containing the source code that needs to be compiled. Other applications might be
triggered continuously at runtime, e.g., the Nutrition Advisor runs on a web server
receiving constantly new requests representing the triggers.

Triggers themselves can either be synthetic or natural. Natural triggers are triggers
that were collected in the production environment of the program, e.g., invocations
from real clients. Synthetic triggers are triggers that were generated and collected in
the development environment of a program, e.g., test data in test suites, random data
during fuzzing, etc. Depending on the PSM application that is realized one might prefer
synthetic or natural triggers. For example, visualization and comprehension make the
most sense with natural triggers to gain insights into the production environment. In
contrast, for semantic clone detection synthetic triggers suffice as one is only interested in
comparing the effect given input data. Usually, program triggers only represent a subset
of all possible inputs. This means that also the IG will only represent a subset of the
behavior. Hence, it is important to select the right program trigger relative to the PSM
use case that is realized.
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4.3 Modeling

The Modeling aspect in Figure 4.1 combines the Structure Graph (SG) and Behavior
Graph (BG) into the Inference Graph (IG) that mirrors the original program (7). First,
the SG is transformed into the prior IG. This IG has the same structure as the program,
i.e., types, properties, methods, parameters, and results are represented via random
variables and factors organized in the same topology (3). However, the local models (i.e.,
nodes/variables) solely operate on the predefined latent space without learning from the
collected observed data (see Figure 3.2). Then, the BG is transformed into Behavior
Datasets (5). These datasets are used to learn the posterior of the local models in the IG
(6). The result is the final IG (posterior) (7) with which PSM applications can be built.
Applications are realized via forward (8) and backward reasoning (9), sampling (10), and
likelihood evaluation (11) in the IG.

4.3.1 Inference Graph — Global Structure Creation

The goal of the Inference Graph (IG) is the same with Bayesian networks, factor, or
cluster graphs. Probabilistic modeling is concerned with finding a good dependency
structure of random variables that approximates a given joint distribution P (X ). In many
real-world situations, only the joint distribution is known or observed. The structure
of the processes that generated the joint distribution is often unknown. In addition,
often many variables cannot be observed directly (latent variables) even if parts of the
structure are known. For example, modeling the process of coin flips allows us to observe
the result of multiple flips, but not the composition of the coin that may lead to some
bias in the flips.

PSM however, has a unique advantage in that it knows which process created the joint
distribution. The variables and their dependency structure are known via the SG. All
variables in the SG can be observed, and the observations are represented via the BG. Only
one question is left: Which variables are explicitly modeled, and which are abstracted into
data? The IG models types, properties, executables, parameters, and results explicitly as
the meta-model from the SG in Figure 4.3 already hints. These represent the observed
variables in the IG. Statements, e.g., like the control flow statements, are abstracted as
unknowns and are only indirectly visible via the observed data.

This is a design decision that balances scalability and usability. Scalability because only
the stack trace and property accesses need to be observed at runtime. Usability because
it pushes the program structure and its first-class elements with their relationships into
the center of the analysis, instead of algorithmic details. Adding statements would
substantially increase the runtime monitoring overhead e.g., by loops that need to be
traced. Also, modeling statements would increase the size of the IG up to a point where it
would be unusable for inference and comprehension by humans. In conclusion, the PSM
IG is a very close representation of the original generative processes that are modeled
and the abstractions balance scalability and usability.

Creating the IG involves a graph transformation from an SG to an IG. The IG is a
factor or cluster graph and each representation is equivalent in its dependence structure.
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However, each representation shows different levels of details regarding the structure and
is useful in different settings. Any element in the IG is called a model element. This
applies to random variables, factors, and clusters. Any model element has an associated
code element in the SG. In that, we use the term model element to refer to code elements
that are modeled via the IG.

Structure Graph to Factor Graph

The first step is to transform the Structure Graph to a Factor Graph. This transformation
involves the mapping of code elements to the factors and random variables as illustrated
in Figure 4.7. Compositional code elements (types, executables) are mapped to factors.
Atomic code elements (properties, parameters, results) are mapped to random variables.
More formally, given an SG and a factor graph

S = (C,R, ϕS),

F = (V ,F ,D, ϕF ),

then, the graph morphism from ϕSF : S → F with pair mappings

ϕVCF
: Cc → F ,

ϕVAV
: Ca → V ,

ϕERD
: Cb →D,

transforms S to F .
The mappings define the subset of code elements and how they are mapped to factor

elements.

• ϕVCF
maps non-empty compositional code elements that exist in the MU to factors

with Cc = {c | c < {T,Ex} ∧ c ∈MU ∧ c 6= ∅}.

• ϕVCF
maps atomic code elements that exist in the MU to random variables with

Ca = {a | a < {Pr, Pa,Re} ∧ c ∈MU}.

• ϕVRD
maps behavioral relationships to dependencies.
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4.3.2 Factor Graph to Cluster Graph

The Cluster Graph representation of the IG is structurally equivalent to the factor graph.
Each factor is transformed into a cluster with the variables being part of it. More formally,
given a factor graph and a cluster graph

F = (V ,F ,DF , ϕF ),

C = (C,DC , ϕC),

then, the graph morphism from ϕFC : F → C with pair mappings

ϕVF C
: F → C,

ϕEDD
: DF → DC ,

transforms F to C.
The mappings define the factor graph elements and how they are mapped to cluster

elements.

• ϕVF C
maps factors to clusters with its variables Scope[Ci] = Scope[Fi].

• ϕEDD
maps dependencies between factors given by the connecting variables to

dependencies in the cluster graph. The connecting variables form the sepset
Si,j ⊆ Ci ∩ Cj .

Important in this transformation is that the resulting cluster graph is family preserving
and adheres to the running intersection property.

Definition 1. A cluster graph is family-preserving when each factor f ∈ F is associated
with a cluster Ci, such that Scope[f ] ⊆ Ci [23].

ϕVF C
is a bijective mapping between a factor and a cluster along with its scopes

Scope[C] = Scope[Fi]. Hence, the property is given through the construction of the
cluster graph.

Definition 2. A cluster graph satisfies the running intersection property if, whenever
there is a variable X such that X ∈ Ci and X ∈ Cj, then there is a single path between
Ci and Cj for which X ∈ Se for all edges e in the path [23].

Figure 4.7 shows an example of the factor and cluster graph transformation. Again, for
visual brevity, not all sepsets and cluster variables are shown but only a representative
subset. Each factor is a cluster with the same scope as the original factor. The sepsets
are the elements that intersect between two clusters. The topology of elements between
structure, factor, and cluster graph is essentially equal as all represent the same underlying
program structure. The biggest difference is in the level of abstraction.

In conclusion, the IG is either a factor or cluster graph constructed from the structure
graph closely representing the original program. What is left is now to instantiate
the local probabilistic models for each cluster and optimize them towards the observed
runtime data.
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Truncated Inference Graph

The IG can either be a factor or cluster graph containing types, executables, properties,
parameters, and is extracted from the structure graph. In Figure 4.1 we can see that
the IG is the basis for all PSM applications that are implemented. The presented IG in
the previous section represents the full definition in which full causal reason is possible.
However, there are many examples of applications in which causal inference is not needed.
For example, semantic clone detection, which is presented in Chapter 7 does not need
global clausal reasoning but only the likelihood evaluation on local models. For these
applications, it would be wasteful to fit the entire model. Any IG that only models parts
of the program is called a Truncated Inference Graph. One truncated version of the IG is
to skip the type models. For example, in the context of semantic clone detection, only the
behavioral differences between methods are important. Neither type models nor global
causal reasoning is used.

In conclusion, a truncated inference graph is an IG that is missing specific code elements.
This is useful for applications in which global inference (in the cluster graph) is not
needed but only local inference (within the clusters).

4.3.3 Behavior Datasets

The Behavior Graph (4) contains all the observed data collected at the runtime of the
program. The Dataset Creation tallies the event stream into Behavior Datasets (5) for
each model element. This process involves temporal alignment of events but also the
imputation of missing values.

Section 4.2 described the BG and how it represents the runtime behavior. The BG
contains the runtime information in form of invoke, receive, read, write, return, and
except events. Each event is associated with a code element from the SG. In addition,
receive, read, write, return, and except events also contain the observed value and its PSM
data type (see Table 4.1). Recall that clusters and factors are compositional elements,
i.e., types or executables. Thus, there are two different dataset creation processes.

In the following section, we will define the dataset creation in a formal way as close
as possible to the implementation of the prototype. However, there are many ways to
impute missing data and stratify the observations of the code elements. This means the
presented stratification and imputation is a solution but not necessarily the only or best
solution for every use-case. We define the following functions for the dataset creation

• φ(e) = eopen returns the frame open event to which e belongs;

• val(e) extracts the value from an event, i.e., e.value;

• type(e) returns the event type, i.e., e.type

• element(e) returns the element of a given event, i.e., f.element;

• head(f) returns the first monitoring event of a frame event, i.e., f.head;

• child(f) returns the child frame event of a given frame event, i.e., f.child;
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• A modified value function that either returns the value of an event or a given
default.

V̂ al(e, c, x) =

{
Element(e) = c, val(e)

Element(e) 6= c, x
(4.7)

• object(f) that returns the object on which the event happened,
i.e., f.elementObject;

Type Datasets

Types are compositional elements that consist of their properties. Hence, type datasets
will contain columns each representing a property. The data points in the type datasets
come from the state changes of properties throughout the lifetime of an object. Hence,
the context of a property is the lifetime of an object. More formally, there exists a BG
and IG in form of a factor graph

B = (E,L, ϕB),

F = (V ,F ,DϕF ),

and the functions defined in Section 4.3.3. The dataset for a given type T with its
properties PrT is than defined over the object datasets oi with

DT =
⋃

i

oi

An object dataset is than a tuple of data points defined by

o = (d0, . . . , di−1, δ(ej , di−1), . . . dn)

where ej ∈ E ∧ Element(e) ∈ Pr ∧Object(e) = o. A data point di is created by

δ(e, di−1) = (V̂ al(e, p̂, x) | (p̂j , xj) ∈ Pr × di−1 | j ∈ I)

where I is the index set of size |Pr|. di−1 represents the previous data point, i.e., the
previous state of the object.

Intuitively, we create a data point with one entry for each property in a type. Each
state change of the object will generate a new data point with the new entry at the
associated tuple position. The scope of a state change may be defined such that each
write indicates a state change. Another possibility is to delineate a state change by
an executable frame, e.g., the execution of the init-method. A third possibility is to
delineate a state change by an executable scope and a repeated change of a property. Each
possibility has advantages and disadvantages. Delineating a state change by any write
may lead to noise in the data, e.g. if a Person object is reused. For example, the data may
contain persons with male height and female weight if gender is the first property that is
changed. Delineating a state change by frames may ignore assignments that happened

52



4.3 Modeling

Table 4.2: addme

Person height weight gender

0 174.30 90.00 Male

1 157.80 97.60 Female

2 159.10 69.80 Male

within a frame if an object is reused multiple times. Delineating a state change by
frames and repeated writes partially solves this problem but might lead to more complex
logic. Finally, a PSM implementation may offer developers to annotate properties if they
diverge from a given default state change mode. Our prototype delineates by frames per
default. An example dataset for Person with properties height, weight, and gender,
is given in Table 4.2. Each state change in Person given by the init()-method results
in one data point in the dataset.

In conclusion, the type datasets are constructed by collecting the values from the event
stream grouped by code elements and objects.

Executable Datasets

Executables are compositional elements that consist of parameters, results, and properties.
Again, each column in an executable dataset will represent one of these elements. The data
points in the type datasets come from the initial executable invocation. Furthermore, any
interaction with an external relationship may trigger additional data points. The external
relationships may be accesses to properties or invocations of dependent executables. The
context of executable datasets is therefore the executable frame, i.e., the lifetime of the
executable on the call stack. More formally, there exists a BG and IG in the form of a
factor graph

B = (E,L, ϕB),

F = (V ,F ,DϕF ).

The dataset for a given executable Ex with its relationships c ∈ Ex is than defined over
the union of all frame datasets fi with

DEx =
⋃

i

fi.

A frame dataset f is than a tuple of data points defined over a fixed but arbitrary frame
open event eopen0 where element(head(eopen0 )) = Ex

f = (d0, . . . , di−1, δ(ej , di−1), di+1, . . . dn)

where ej ∈ E ∧ element(ej) ∈ Ex ∧ φ(ej) = eopen0 . An arbitrary but fixed data point di
for the frame is than created by

δ(e, c, d) = (V̂ al(e, c, xj) | (cj , xj) ∈ Ex× d | j ∈ I)
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Table 4.3: addme

advice height weight bmi advice

0 174.30 90.00 29.62 Consider skipping the meal.

1 157.80 97.60 39.19 Please do not eat me!

2 159.10 69.80 27.57 Consider skipping the meal.

where I is the index set of size |Ex|. di−1 is the previous data point in the frame dataset
and indicates a forward filling of missing values. Important is that forward or backward
filling depends on the order of code elements in Ex. For simplicity, we omitted the
backward filling as it works analogues.

Intuitively, we create multiple data points per frame depending on the amount of
interaction with code elements that are not declared in Ex. The logic of creating multiple
data points per frame is similar to creating multiple data points per object state in
Section 4.3.3. Table 4.3 shows an example of the dataset of the advice-method.

In conclusion, the executable datasets are constructed by collecting the values from
the event stream grouped by code elements and frames.

4.3.4 Inference Graph — Local Structure Optimization

The last step in the modeling aspect of PSM is to take the global Inference Graph and
optimize its local probabilistic model with the Behavior Datasets (6). The result is the
final Inference Graph (7) with a global structure reflecting the program structure and
local models representing types or executables.

Each cluster in the (cluster graph) IG will be a flow-based model i.e., a Non-Volume
Preserving Transformation (NVP) [30]. An NVPs is a probabilistic model based on
a neural network architecture. The NVPs are the local models for each cluster and
are density estimators from which one may sample observation x but also evaluate the
likelihood px(x;θ). Each local model will learn the joint distribution of the compositional
code elements, i.e., types or executables. For example, the local model for the bmi()-
method in the Nutrition Advisor will model pbmi(bmi;θbmi). The variables of the local
model are the observed variables x and latent variables f(x) where f is the flow. These
variables x are also present in the associated behavior dataset as the construction is
based on the IG. The NVPs are then optimized iteratively via stochastic gradient descent
and the procedures discussed in Section 3.2.4 and [30]. This optimization reduces the
divergence between the target distribution p∗

x(x) and the flow-based model px(x;θ). The
result of this process is an optimized NVP. The NVP can then be used to evaluate the
likelihood of observations or to generate a new set of samples. Each cluster in the IG is
then an NVP agreeing on the underlying data as it is sampled from the original program
which naturally factorizes the behavior in clusters.
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Optimization of Flow-based models

Each local model is a probabilistic model represented via a flow-based model. This
specific instance of the flow-based model is in the context of PSM an NVP. However, any
other model with similar properties can be used. Given a flow-based model px(x;θ) that
is fitted to a target distribution p∗

x(x) one needs to minimize the divergence between
both. The parameters of the flow θ = {φ, ψ} with φ being the parameters of the flow
f and ψ of the latent distribution pz(Z). The flow is then optimized via the forward
Kullback-Leibler (KL) divergence

L = DKL [p∗
x(x) ‖ px(x;θ)]

= −Ep∗

x(x) [log px(x;θ)] + const

= −Ep∗

x(x)

[
log pz(f(x;φ);ψ) + log

∣∣det Jf−1(x;φ)
∣∣] + const

In the case of NVPs with a Gaussian latent space, update function of the parameters are
then given by the closed-form likelihood of a Gaussian plus the Jacobian determinant

∇φL(θ) = −
1

N

N∑

n

∇φ log pz(f(xn;φ);ψ) +∇φ log |det Jf (xn;φ)|

∇ψL(θ) = −
1

N

N∑

n

∇ψ log pz(f(xn;φ);ψ)

∇φ is the update of the parameters of the flow, i.e., the NVP. ∇ψ is the update of the
parameters of the latent distribution. However, in practice, the latent space is selected to
be a unit Gaussian N (0, I) rendering this update unnecessary. The optimization stops
once no improvement can be observed or when the predefined time budget is used. e.g.,
100 epochs.

Intuitively, for each batch in the iterative process, one transforms the samples into the
latent space z and evaluates its likelihood. This likelihood, along with the Jacobian of the
transformation, is then used to update the parameters of the neural network architecture.
The Jacobian, in the case of NVPs, can be computed efficiently given its architecture [30].
A thorough discussion on flow-based models with all details is given by Papamakarios et
al. [31].

In conclusion, the optimization of the local models, i.e., the NVPs, is an iterative
stochastic gradient descent algorithm that uses the behavior datasets to optimize the
neural network architecture. This optimization is done for each cluster in the IG. The
result is the final IG with its global structure and local probabilistic models fitted to the
program structure and behavior.

4.4 Inference

Inference is the fundament of all applications motivated in Section 1.2 and illustrated in
Figure 4.1. The three tightly connected main aspects of inference are sampling (genera-
tion), conditioning (information propagation), likelihood evaluation (criticism). Sampling
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draws observations from one (local) or multiple (global) nodes (NVPs) in the PSM
network. This enables the probabilistic execution of e.g., an executable or a subsystem.
Conditioning sets the models into a specific state. For example, Figure ?? illustrates
the height property in its unconditioned and conditioned state. Local conditioning sets
one node into a state. Global conditioning propagates a state across multiple clusters.
Likelihood Evaluation quantifies samples in terms of their likelihood under a given cluster.

Figure 4.1 illustrates the combination of these aspects and combines them into causal
forward (8) and backward (9) reasoning. Forward reasoning (8) (e.g., Person.height

to BmiService.bmi) samples a conditional distribution and propagates it through the
network to set downstream nodes into a conditioned state. Backward reasoning (9) starts
at a conditioned downstream node and searches for the most likely cause. At every
step, it is possible to draw conditional or unconditional samples. The directional aspect
(forward and backward) is based on the program’s call dependencies. However, the IG
itself is an omnidirectional cluster graph.

Marginal inference finds the marginal probabilities of one or multiple variables in the
absence of a condition. Conditional inference finds the probabilities of one or multiple
variables in the presence of a condition imposed by other variables. This inference can
happen locally and globally, i.e., within or across clusters.

4.4.1 Properties of the Inference Graph

The IG has some advantageous properties for inference: the running intersection property
and marginal completeness.

Running Intersection Property

Definition 3. A cluster graph C satisfies the running intersection property if, whenever
there is a variable X such that X ∈ Ci and X ∈ Cj, then there is a single path between
Ci and Cj for which X ∈ Se for all edges e in the path. [23].

The property states that every cluster containing variable X spans a unique tree.
Hence, there is only a single path in the cluster graph containing direct information about
X. This property holds for parameters and results but only partially for properties. Types
and executables are excluded from the definition as they are compositional code elements
in the SG and clusters in the IG. Properties are global variables shared across multiple
clusters. Any cluster may access the information stored in them. The implication of the
running intersection property is important when doing global inference in the IG as it
guarantees that information only flows along one path. In addition, properties might
store parts of the information while traveling along the path.

The proof that the running intersection property is satisfied is best done by looking at
the atomic variables one at a time. A parameter can only exist in the cluster Ci that
represents the method that defines the parameter and a calling method Cj . Hence, there
exists only a single path containing exactly one edge e connecting them satisfying the
running intersection property. A similar proof can be constructed for a method result.
The proof for properties only holds in the case where X consists of a single property.
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A property can only exist in the cluster C0 that represents the type that defines the
property and any method C accessing it. Any sepset between C0 and Ci will contain the
property variable connecting both. However, there exists no edge DC connecting any of
C as a method cannot propagate a property but only parameters. Hence, the only valid
path between Ci ∈ C and Ck ∈ C is over C0. From a program’s viewpoint, a property
can only be dereferenced within a method. Providing the dereferenced values to a calling
method would result in a parameter.

Marginal Completeness

Definition 4. An inference graph is marginal complete if, there exists exactly one cluster
C for each variable X ∈ X that defines its marginal behavior p(X).

This property defines that the IG contains exactly one cluster that explicitly captures
the marginal behavior of a given variable. This property holds for types, properties,
executables, parameters, and results.

The proof that the IG is marginal complete is again best done by inspecting each type
of variable. The IG is a reflection of the SG and adheres to its structural constraints. Any
code element within a program may only be defined once with a given canonical name (or
namespace). This means that the SG does not contain two code elements representing
the same program definition. This means that the IG has exactly one defining cluster (or
the cluster itself) that represents the code element. The defining cluster contains the
entire marginal behavior of the code element and its associated variable.

Intuitively, a program (Java semantics) may not contain a code element, e.g., a property,
with the same canonical name. A property may only be defined once in a program. This
holds for all major programming languages to the best of our knowledge. This means
that the property captures the entire behavior of itself, while consuming code elements
may only capture parts of the behavior. The same holds for the IG as it is a reflection of
the SG. This implies that we may retrieve the marginal probability of any variable by
consulting its defining cluster, e.g., the type cluster associated with the type declaring
the property. This also holds for joint probabilities defined in the same cluster e.g., the
parameter list of an executable. An exception is given for code elements at the MU
boundary that are included for the sake of compatibility. For example, parameters that
are provided to an executable that resides outside the MU will have no defining cluster
in the IG. Hence, only the conditional probabilities relative to the calling executable will
be available.

4.4.2 Local Marginal Inference

Local marginal inference finds the marginal probabilities of one or multiple variables
within a cluster in the IG. For example, evaluating the marginal distribution of the bmi()

method with its cluster Cbmi and the joint probability p(height, weight, bmi).
Marginal inference within a cluster means marginal inference in the NVP. This is done

by sampling from the latent space and transforming it via the flow into observed variables.
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More formally, let z be a latent vector with the probability distribution pz(z) of a cluster
C represented via a flow f . Then, the marginal local inference of px(x) is given by

px(x) = pz(f
−1(x))

∣∣∣det Jf−1(x)
∣∣∣ .

Intuitively, we transform the observed sample x into its latent representation z and
evaluate its probability by considering the change in volume via the Jacobian determinant.
Inversely, to sample a marginal sample from the flow one can

x = f(z)

where z ∼ pz(z). First, we sample from the Gaussian latent space and then transform it
back into the observed space. Local marginal sampling with NVPs will always produce
the full joint distribution of all variables in the scope of the cluster.

In conclusion, local marginal inference with NVPs transforms the latent space joint
probability distribution into the observed space by applying the flow.

4.4.3 Local Conditional Inference

Conditional inference finds the probabilities of one or multiple variables in the presence of
a condition (or a constraint) imposed on other variables. Conditional inference effectively
allows one to ask questions to a given cluster. For example, pbmi(height, weight | bmi =
23) is the conditional joint probability of the height and weight given that we fix the
result of bmi to 23.

Conditional inference within a cluster uses the capabilities of NVPs to condition the
clusters. Given is a set of variables η ∈ C, a condition given in form of an observation
x, and a trained flow f (i.e., a NVP) q(η;φ). We can then use variational inference to
approximate the posterior via

p(η | x) ≈ q(η;φ) = qz(z) |det Jf (z;φ)|−1 ,

where qz(z) is the latent distribution (or base distribution) and f(·;φ) is the flow with
its parameters φ. The posterior is than found by maximizing the evidence lower bound
(ELBO)

log p(x) ≥ Eq(η;φ) [log p(x,η)−]− Eq(η;φ) [log q(η;φ)]

= Eqz(z) [log p(x, f(z;φ))]− Eqz(z) [log qz(z)] + Eqz(z) [log |det Jf (z;φ)|]

= Eqz(z) [log p(x, f(z;φ))] + Hqz(z) [log qz(z)] + Eqz(z) [log |det Jf (z;φ)|] ,

where H [qz(z)] is the differential entropy of the base distribution, which is constant
relative to φ [31]. The expectations can be estimated by Monte Carlo using multiple
samples from the base distribution and averaging the results

Eqz(z) [log p(x, f(z;φ))] ≈
1

N

N∑

n=1

log p(x, f(ẑn;φ))

Eqz(z) [log |det Jf (z;φ)|] ≈
1

N

N∑

n=1

Eqz(z) [log |det Jf (ẑn;φ)|] .
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However, variational inference is only one possibility to compute conditional probabilities
with NVPs. Papamakarios et al. [31] present alternative methods and additional detail
into the discussion.

Intuitively, we fix the parameters of the flow and optimize the parameters of the random
variables in the latent space via stochastic gradient descent given a set of observations.
Once converged, we have a set of latent space parameters (or configurations), that
approximate, once transformed via f−1, the original observations best. Important is that
the condition can contain only parts of x as the remaining parts may be inferred during
the process (imputed).

In conclusion, local conditional inference finds the best latent parameters that approxi-
mate its observed representation via variational inference. This is an iterative approach
and may impute missing dimensions during the process.

4.4.4 Global Marginal Inference

Global marginal inference finds the marginal probabilities of one or multiple variables in
the IG. For example, pbmi(height, weight) represents the joint probability of the height

and weight parameter in the bmi-method. The IG is marginal complete as described in
Section 4.4.1. This means finding the marginal probabilities of one variable reduces to
evaluating the probability of its defining cluster. The same holds for the joint marginal
probabilities of multiple variables defined in one cluster.

To find the joint marginal probabilities for variables defined in different clusters
one needs to calibrate the probabilities between the clusters containing the variables.
Calibrating a cluster graph is done via the sum-product belief propagation algorithm.
Calibration describes the process of finding a belief (a normalized or unnormalized
probability) between two clusters such that both agree on its extent. A cluster graph is
then calibrated if for each edge (i− j) connecting cluster Ci and Cj we have

∑

Ci−Si,j

βi =
∑

Cj−Si,j

βj

where β is the belief. That is, any two connected clusters agree on the marginal of
variables in their sepset. Algorithm 2 [23] is an adaptation of Algorithm 1 for graphs in
which we propagate beliefs in the graph until convergence. The algorithm will result in a
calibrated graph that provides the joint marginal probabilities of variables. Important is
that properties act as a global store of information, just like in the underlying programs.
They do not adhere to the running intersection property and are received and updated
in any cluster that uses them during the algorithm.

While calibrating the IG is possible, most program-related use-cases may not be as
useful as someone thinks. An example use-case might be a program foo1(a, b) and
foo2(c, d) calling bar(e). Evaluating the joint marginal of p(a, d) may be possible,
but unlikely to be of great importance for programmers.
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4.4 Inference

Algorithm 2: Calibration using sum-product belief propagation in a cluster graph
[23]

Function CGraph-SP-Calibrate(Φ, C):
Initialize-CGraph
while graph is not calibrated do

Select (i− j) ∈D
δi→i(Si,j)← SP-Message(i, j)

for each cluster i do
βi ← ψi ·

∏
k∈Nbi

δk→i

return {βi}

Function Initialize-CGraph():
C

Function SP-Message(i, j):
// i ... idx sending cluster
// j ... idx receiving cluster
ψ(Ci)← ψi ·

∏
k∈(Nbi−j) δk→i

τ(Si,j)←
∑
Ci−Si,jψ(Ci)

return τ(Si,j)

In conclusion, the IG is a marginal complete cluster graph in which each variable has a
defining cluster containing its marginal behavior. Finding the marginal probabilities for a
given variable reduces to finding the cluster that represents the code element that defines
the variable in the original program. To find the marginal probabilities for variables with
different defining clusters we may apply the sum-product belief propagation algorithm.

4.4.5 Global Conditional Inference

Global conditional inference finds the conditional probabilities of one or multiple variables
in the context of the IG. Global conditional inference allows us to answer questions
across multiple code elements in a program. For example, evaluating pbmi(x) given that
the handle-method only receives requests from females phandle(x | gender = female).
Inference in traditional cluster graphs is done via the loopy belief propagation algorithm.
However, many use cases in the IG will condition and propagate along a path down or up
the call graph of the program. In these cases, it suffices to use the simpler sum-product
algorithm in Algorithm 1 if the inference path is a tree.

In the general case, let there be a condition c on cluster Ci and target variables η ∈ Cj
were Ci 6= Cj . Furthermore, there exists a path (i− j) connecting cluster Ci and Cj . To
compute the global conditional probability we apply Algorithm 2 while initializing and
fixing the conditioned cluster to the constraint c. In the case where the path forms a
tree, we may apply Algorithm 1 while initializing and fixing the conditioned cluster to
the constraint c. The local clusters are conditioned according to Section 4.4.3.
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Intuitively, global conditional inference is the same as marginal inference while fixing the
conditioned variables to their constraint. The constraint itself acts like an unchangeable
fact that we observed. Any probabilistic relationship to the observed variable will adapt
accordingly to the observation and propagate the information through the network.

In conclusion, global conditional inference is global marginal inference while fixing
variables to a specific observed fact or constraint.

4.5 Related Work

To position PSM, it is useful to distinguish between programming paradigms and software
analysis methods. A programming paradigm is a collection of programming languages
that share common traits (e.g., object-oriented, logical, or functional programming).
Analysis methods extract information from programs (e.g., design pattern detection,
clone detection). PSM is an analysis method that analyzes a program given in an
object-oriented programming language and synthesizes a probabilistic model from it.

Probabilistic programming is a programming paradigm in which probabilistic models are
specified. Developers describe probabilistic programs in a domain-specific language (e.g.,
BUGS [37]) or via a library in a host language (e.g., Pyro [?], PyMC [27], Edward [38]).
In contrast, PSM analyzes a program written in a traditional programming language
and translates it into a probabilistic program. This difference also holds for modeling
concepts like Bayesian Networks [23] or Object-Oriented Bayesian Networks [39, 40] that
can be implemented via a probabilistic programming language.

Formal methods are a programming paradigm that leverages logic as a programming
language (e.g., TLA+ [41] or Alloy [42]). Stochastic model checking [43] introduces
uncertainty in the rigid formalism to model, e.g., natural phenomenons. Developers
specify the behavior and provide the state transition probabilities in a special-purpose
language (e.g., PRISM [44], PAT [45], CADP [46]). Furthermore, extracts the state
transition probabilities from runtime traces. This may be more imprecise than an expert
that provides the probabilities. However, it opens up PSM to a substantially larger set
of programs and problems that can be applied since expert knowledge might not always
be available. Furthermore, PSM analyzes a program and synthesizes a PM from it. This
means that there is no additional education of the developers needed in order to apply
the methodology.

Symbolic execution [47] is an analysis method that executes a program with symbols
rather than concrete values (e.g., JPF-SE [48], KLEE [49], Pex [50]). It can be used
to determine which input values cause specific branching points (if-else branches) in
a program. Probabilistic symbolic execution [51] is an extension that quantifies the
execution, e.g., branching points, in terms of probabilities. This is useful for applications
that quantify program changes [52] or performance [53]. Probabilistic symbolic execution
operates on the statement level while PSM abstracts statements capturing, e.g., inputs
and outputs of methods. This abstraction makes PSM computationally scalable while
symbolic execution suffers from potential path explosions. Furthermore, this abstraction
shifts the analysis focus to the program semantics compared to the statement semantics.
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An analysis on statement level seeks answers to program properties that occur at, e.g.,
a specific branching point. In contrast, an analysis on the program level seeks answers
to program properties that occur, e.g., between two methods. Both approaches are
complementary to each other and extend the possible range of analyzes that can be
conducted.

Probabilistic debugging [54, 55] is an analysis method that supports developers in
debugging sessions. The debugger assigns probabilities to each statement and updates
them according to the most likely erroneous statement. In contrast to PSM, most
probabilistic debuggers operate on a statement level. Another difference is given in the
life-cycle of the methodologies. Debugging has an operational life-cycle only valid until
the bug is found. PSM and the resulting models are intended to be persisted along with
the matching source code revision. This allows, e.g., method-level fault localization, by
comparing multiple revisions of the same model.

Invariant detectors [14, 56, 57, 58, 59, 60] learn assertions and add them to the source
code. This helps to pinpoint erroneous regions in the source code. These assertions are
found by observing the runtime of a program and learning rules that bound the value
region of statements and variables. For example, adding a precondition assertion to a
method by asserting the minimal observable value of an integer parameter. PSM in
contrast learns the full joint distribution of inputs and outputs of executables instead of
thresholds that partition the data into regions. This allows PSM to generate complex
assertions that include multiple variables and conditions on them.
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5 Case Study: Modeling Feasibility

In the previous Chapter 4, we introduced PSM and its theoretical fundament. This
chapter will evaluate the method’s basic feasibility by applying the methods to a range
of different projects. More concretely, a PSM prototype will extract structure graph,
behavior graph, and inference graph from several projects. Then we will evaluate each
graph on its own for its essential properties. The evaluation of PSM applications as
described in Section 1.2 are beyond the scope of this chapter. However, Chapters 7 and 8
present the implementation of two PSM applications in great detail and naturally extend
this chapter.

5.1 Study

The core hypothesis of PSM is that programs can be transformed into a probabilistic
model, i.e., the inference graph. This study (i.e., the prototype, research questions,
analyses, and discussions) focuses on evaluating the core PSM methodologies presented
in Chapter 4. Specifically, the study answers the following questions, providing evidence
for the core hypothesis:

RQ1 [Code] Are projects exposing enough code elements that are eligible for PSM?

RQ2 [Runtime] Are code elements creating enough runtime data with which the model
parameters can be optimized?

RQ3 [Modeling] Are probabilistic models capable of capturing the runtime data of
eligible code elements?

RQ4 [Inference] Is information propagation consistent and stable in the inference graph?

RQ1 addresses the precondition of whether projects expose enough data (i.e., number or
text) code elements that can be modeled. RQ2 addresses the precondition of whether these
(data) code elements create a sufficient amount of runtime data that can be modeled.
RQ3 addresses the central question of whether the behavior of a program in the form of
its runtime data can be approximated via models. Finally, RQ4 evaluates the usefulness
of the approach and whether PSM is a sound basis for the applications presented in
Section 1.2. The four questions are scoped by structured programs that can be executed
and support runtime monitoring. The empirical evidence in this chapter is essential for
any future endeavor regarding PSM.



5.1 Study

Table 5.1: Hyper-parameters used in the experiments.

# Stage Name Values

1 Data Size 20 to 10 000

2 Data Test Split 10%

3 Preprocessing Number Standardization

4 Preprocessing Discretization Threshold 16

5 Preprocessing Discretization Encoding Base 10

6 Preprocessing Text Encoding Base 10

7 Optimizer Algorithm Adam [61]

8 Optimizer Learning Rate 5× 10−4

9 Optimizer Weight Decay [62] 5× 10−2

10 Optimizer Batch Size full dataset

11 Optimizer Max Epoch 1000

12 Optimizer Early Stopping Patience 20 epochs

13 NVP [30] Coupling Count 6

14 Coupling Layer [30] Linear Layer Count 2

15 Coupling Layer [30] Hidden Units Count 32 (low) 128 (high)

16 Coupling Layer [30] Latent-Space N (0,1)

17 Coupling Layer [30] Translation Activations Gelu [63]

18 Coupling Layer [30] Scale Activations Gelu [63], Tanh

5.1.1 Setup

We implemented a prototype called Gradient that reflects the process and workflow
presented in Figure 4.1.

1. The input Source Code were open-source subject systems written in Java (see next
Section 5.1.2).

2. The Structure Graph was extracted using Spoon [34] and via methods presenting
in Section 4.1.

3. AspectJ 1.9.1 was used to weave monitoring aspects (tracing) into the subject
systems to capture their Runtime Behavior in the modeling universe.

4. The Inference Graph was created as discussed in Section 4.3 for each code element.
The generated IG was truncated, i.e., no type models were constructed. The shape
and size of the NVPs is given in Table 5.1.

5. The Behavior Datasets were created as presented in Section 4.2, by tallying the
event stream. This includes splitting the dataset into training and evaluation
partitions and preprocessing them. Preprocessing consisted of encoding text features
by enumerating (starting from 0) and encoding them in a base 10 vector space.
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Table 5.2: Overview of the projects used in the study. LoC are the lines of code in a
project.

Project Version #Files #LoC Type Property

Data Ref Unk Total

Nutrition Advisor 0.1.0 5 154 5 11 3 1 15

Structurizr 1.0.0 115 9941 123 229 85 24 338

jLatexmath 1.0.7 156 21 369 191 490 121 81 692

PMD 6.5.0 799 89 349 981 1858 503 481 2842

1075 120 813 1300 2588 712 587 3887

Data = {Number, Text}, Ref = Reference, Unk = Unknown

Table 5.3: Overview of the projects used in the study. LoC are the lines of code in a
project.

Project Parameter Executable

Data Ref Unk Total Data Ref Void Unk Total

Nutrition Advisor 19 1 0 20 10 0 19 1 30

Structurizr 725 342 26 1093 320 302 508 20 1150

jLatexmath 1115 556 153 1824 269 416 511 59 1255

PMD 2933 2910 1943 7786 3222 719 3445 2073 9459

4792 3809 2122 10 723 3821 1437 4483 2153 11 894

Data = {Number, Text}, Ref = Reference, Unk = Unknown

Number dimensions were considered discrete if less or equal than 16 values were
found and underwent the same base 10 encoding procedure. Finally, all non-encoded
dimensions were standardized to have a mean of zero and a standard deviation of 1.

6. Model parameters were optimized with their datasets, and the best parameter
setting was retained (w.r.t. evaluation performance).

7. Finally, the persisted models were used in the analysis scenarios (see Section 5.1.5).

Hyper-parameters of the experiments are given in Table 5.1. The chosen values are
based on additional non-reported experiments evaluated on a synthetic dataset. All
experiments were executed on a single machine (Intel i7, Nvidia GTX 970).

5.1.2 Subject Systems

The study uses four subject systems listed in Tables 5.2 and 5.3. Nutrition Advisor is
the running example introduced in Chapter 2. Structurizr [64] is a developer-focused
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software architecture visualization tool. jLatexmath [65] is a library for rendering LaTeX
formulas. PMD [66] is a static code analysis tool for Java applications.

All code elements of the projects were included in the modeling universe (excluding
inherited third-party elements). Nutrition Advisor received 1000 advice requests as a
trigger with data based on the NHANES r[20] dataset. jLatexmath and Structurizr were
executed with examples provided in their documentation. PMD received the Nutrition
Advisor as input program.

5.1.3 Controlled Variables

The study controls for one variable: Capacity.

• Capacity: The capacity describes the number (low = 32, high = 128) of units in
the linear layers of the NVPs.

5.1.4 Response Variables

The response is split into quantitative and qualitative parts. The quantitative part
evaluates the Events per Code Element (ECE), Distinct Values per Code Element (DCE),
and Negative Log-Likelihood (NLL). The qualitative part assesses the visual fidelity of
the samples generated by the model compared to the original dataset. Furthermore, it
evaluates the usefulness of the PSM network via a scenario-based evaluation given in
Section 5.1.5.

• Events per Code Element (ECE): ECE measures the number of events emitted
by code elements. This provides insights into the runtime activity of elements and
how many models need to be fitted. We report ECE1 and ECE10 to distinguish
between dependencies/constants and real behavior carrying code elements. ECE1
includes all code elements with at least one event (all active code elements at
runtime). ECE10 includes only code elements that emitted at least 10 events at
runtime.

• Distinct Values per Code Element (DCE): DCE measures the number of
distinct values emitted by code elements. This provides insights into the capacity
requirements of the models. We report DCE1 and DCE10 where DCE10 includes
code elements with at least 10 distinct values.

• Average Negative Log-Likelihood (NLL): Measures the average Negative
Log-Likelihood (Equation 3.4) of data points under the model in natural units of
information (nats; lower is better).

5.1.5 Experiment Results

The study results are split into four groups: Code, Runtime, Modeling, and Inference.
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Table 5.4: Events are the number of events observed at runtime. ACT10 are the number
of events observed at runtime on code elements with at least 10 events. DCT10
are the number of distinct values on code elements with at least 10 distinct
values.

Project Data Type Events ACT10 DCT10

Mdn Q1 Q3 Total Mdn Q1 Q3 Total Mdn Q1 Q3 Total

Nutrition Advisor
Data 1000 1000 1000 21 000 1000 1000 1000 21 000 524 363 824 8040

Others 1000 252 1001 9008 1001 1000 1501 9002 1000 1000 1000 1000

Structurizr
Data 6 2 17 35 852 25 16 67 35 041 21 13 46 2514

Others 12 3 36 58 489 34 17 104 57 607 29 16 59 3331

jLatexmath
Data 130 15 526 6 415 336 274 61 1297 6 414 919 39 18 81 24 495

Others 66 6 530 1 377 280 257 56 1064 1 376 553 107 30 408 42 592

PMD
Data 35 5 154 15 069 591 117 37 267 15 068 209 39 18 91 24 511

Others 18 5 117 1 882 176 64 20 185 1 879 058 30 16 123 69 569

21 5 138 24 868 732 83 25 306 24 861 389 39 17 102 176 052

Mdn = Median, Q1/3 = Quartile
Data = {Number, Text}, Others = {Reference, Unknown}

Code

The projects contained a total of 27 804 property, parameter, and executable code elements.
PMD is the largest project containing 76 % of the total code elements. Nutrition Advisor
is the smallest project containing 0.25 %. Most elements were executables (43 %) or
parameters (39 %). 42 % of the elements were data elements, i.e., had either a number or
text type that is eligible for PSM modeling. 22 % were references within the modeling
universe and the remaining 36 % were elements of unknown type that were not within
the modeling universe. Tables 5.2 and 5.3 shows detailed results per subject system,
element type, and data type.

Runtime

Monitoring sessions lasted for a median duration of 136.55 s (IQR = 3.27 to 369.35) and
were concurrently executed with the modeling sessions of other projects. The median
processing speed was 25 101 events per second (IQR = 24 727 to 26 283).

During the monitoring session, a total of 24 868 732 events were emitted from 6002
code elements (22 % of total code elements). 36 % of the 6002 code elements emitted data
(text or number) events. 68 % were generated by the PMD project, while the least events
were generated by the Nutrition Advisor 0.12 %. 87 % of the events were data (text or
number) events while the remaining 13 % were either reference or unknown events.

The event analysis shows that most of the events (24 861 389) occurred on 3868 (14 %
of total) code elements. This excludes elements that emitted less than 10 events (ECE10).
36 % of the 3868 code elements generated data (text or number) events. Percentages for
the largest and smallest, as for the data types match those of the events. Differences are
given in Table 5.4 in terms of the central tendencies.

The distinct value analysis shows that a total of 176 052 distinct values were generated
by 914 code elements (3.29 %). This excludes elements that emitted less than 10 events
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Table 5.5: Model analysis results split across projects, and capacity. Lower is better for
NLL results.

Capacity Project Models Data Points Dimensions

Mdn Q1 Q3 Total Mdn Q1 Q3 Total

Low

Nutrition Advisor 4 1000 1000 1000 4000 6 5 8 27

Structurizr 50 67 31 137 14 715 3 3 4 179

jLatexmath 146 393 82 1248 206 820 4 3 7 763

PMD 574 133 56 337 454 545 4 3 5 2511

Low 774 151 56 472 680 080 4 3 5 3480

High

Mdn = Median, Q1/3 = Quartile

Table 5.6: Model analysis results split across projects, and capacity. Lower is better for
NLL results.

Capacity Project Training NLL Test NLL

Mdn Q1 Q3 Total Mdn Q1 Q3 Total

Low

Nutrition Advisor −1.37 −4.40 1.92 −4.44 −1.61 −4.51 1.69 −4.80

Structurizr −0.83 −2.77 1.75 −48.86 −0.93 −2.95 2.08 −39.27

jLatexmath −3.10 −7.64 1.06 −617.12 −3.10 −7.91 1.29 −598.81

PMD −3.96 −6.84 −3.15 −3080.96 −3.96 −6.69 −2.94 −3034.99

Low −3.95 −6.67 −1.96 −3751.38 −3.95 −6.58 −1.96 −3677.88

High −3.95 −7.22 −2.03 −3985.55 −3.99 −7.30 −1.99 −3946.18

Mdn = Median, Q1/3 = Quartile

(DCE10). 44 % of the 914 code elements generated data events. Most of the distinct values
come from the PMD project that makes up 53 %. The least distinct values were generated
by the Structurizr with 3.32 %. Distinct values related to Data were encountered 34 %
while others were encountered 66 % of the time.

Modeling

Tables 5.5 and 5.6 contains the detailed results of the low capacity setting and the
margins for the high capacity setting. The total wall time to optimize the parameters of
all models was 195 min (111 min for high capacity). The median time needed to optimize
one model in the low capacity setting was Mdn = 72.42, IQR = 55.21 to 93.16 (Mdn =
38.60, IQR = 29.11 to 50.16 for high capacity).

A total of 774 models were fitted. PMD accounted for 74 % of the models. In sum,
680 080 data points were used in the process where Nutrition Advisor had the most data
points available per model (1000). A total of 3480 dimensions exist across all models
where PMD accounts for 72 % of all dimensions. However, the Nutrition Advisor models
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had the highest amount of dimensions per model. 62 % of the dimensions were related
to continuous features and the remainder to discrete features. A total of 12 787 800
parameters were used (Mdn = 15 780, IQR = 15 000 to 16 560) in the low capacity setting
for the models. The high capacity setting had a total of 165 172 056 parameters (Mdn
= 210 468, IQR = 207 384 to 213 552). Finally, all projects yielded a total test NLL of
−3677.88 (low capacity). On average, the models found in the PMD project had the
best NLL with −3.96 and the worst in the Structurizr −0.93. No significant divergence
between training and test NLL can be seen.

The qualitative inspection of the models revealed a good approximation with two
caveats. First, an imprecise density estimate is given for categorical dimensions that
include high mass levels. The high mass levels cause an increase of mass in the surrounding
levels compared to the original data. Proximity in categorical data is introduced by
the 10-ary encoding and the continuous nature of NVPs. Second, an imprecise density
estimate is given in continuous dimensions with disconnected high-density modes being
connected. This issue occurs more frequently in the low capacity setting than in the high
capacity setting indicating under-fitted models.

Inference

The qualitative assessment of the inference capabilities of PSM are split into two scenarios
presented in Figure 5.1 and Figure 5.2. These scenarios extend the running example by
adding the Servlet to the Modeling Universe.

The first scenario in Figure 5.1 shows a simulation in which the Nutrition Advisor
is conditioned on women requests. The circles at the top illustrate the original call
hierarchy and parts of the PSM network from Figure 5.1. Each node was fitted on the
original data without any restrictions or conditions. The contour plots below show the
height and weight variables in each model conditioned by gender (see Figure 5.2 for
unconditional version). The density plots at the bottom present the bmi variable of the
same respective model. In the background is the original unconditioned distribution
(i.e., including males). Only the handle-model has direct access to the gender property.
The original conditional information (i.e., Person.gender = Female) flows through the
network by iteratively sampling n observations, propagating, and conditioning. This
equals n (probabilistic) executions of the program. Finally, the right part in Figure 5.1
shows the degree of information degradation in a forward and backward inference setting
with 10 round-trips (40 information hops). The centers and shapes are mostly preserved,
but a minimal reduction of the variance can be seen. The density of the bmi variable
was preserved over the 40 hops without substantial loss of information.

The second scenario in Figure 5.2 assumes that Servlet and NutritionAdvisor are
developed by Company A while BmiService is developed by Company B specialized in
ML. Company A uses the simple height/weight formula to stub the BmiService until
Company B delivers its service based on a supervised machine learning model. Company
A has a PSM model Mnull of the system. Company A builds a second revision Malt of its
PSM model, including the new component they received from Company B (BmiService).
The automated compatibility checks during continuous integration failed for code elements
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dependencies. This large proportion justifies the use of PSM for projects independent of
their size (RQ1).

In conclusion, projects, independent of their size, expose enough code elements eligible
for PSM.

5.2.2 Runtime

The results of the runtime analysis (see Section 5.1.5) show that most events are related
to actual data (87 %), providing evidence for RQ2 and support for PSM. These data
events are emitted by a rather small portion of the active code elements (14 %, ACT10).
Regarding RQ3, this means that few models will capture most of a program’s behavior.
Most of the variability is generated by few code elements 3.29 %. Nearly half of the
variability is related to data (44 %) while the other half are mainly object references.
This means that the average capacity can be low (RQ3).

In conclusion, active code elements are creating enough data that can be used for PSM.

5.2.3 Modeling

The results of the modeling analysis (see Section 5.1.5) show that most models have few
dimensions. This supports the use of low capacity models. The selected capacity does not
hint at overfitting to specific portions of the data given that training and test NLL are
not significantly different. The qualitative inspections revealed high-quality models with
good approximations with two caveats (mass leakage and mode connectivity). The two
issues are mainly related to the capacity of the model which is too high for discrete, but
too low for continuous variables. One way to alleviate these issues would be an adaptive
model class and parameter selection.

In conclusion, the qualitative and quantitative assessments suggest that probabilistic
models can approximate the behavior of a program.

5.2.4 Inference

The inference analysis (see Section 5.1.5) evaluated the inference capabilities of PSM
models by two illustrative scenarios. The first scenario (Figure 5.1) illustrated multi-
dimensional information propagation with latent factors across multiple models. The
second scenario (Figure 5.2) focused on model/data evaluation in a software development
context in which software and AI components are integrated. The scenarios distill
the foundations on which any PSM application (see Section 1.2) is built on: sampling
(generation), conditioning (information propagation), and likelihood evaluation (criticism).

In conclusion, results show that local (within model) and global (between models)
generation is sensitive and consistent to inference conditions.
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5.3 Limitations

There are several limitations to the approach or the current prototype. The approach
needs a structured program, and it must be observable at runtime. Large methods that
handle multiple tasks will reduce the usefulness of PSM.

The current prototype is focused on data. References are handles to objects that might
contain data or more references. PSM naturally dereferences these handles since models
only contain, e.g., properties, that are accessed. This means that PSM is not useful for
libraries whose sole purpose is reference management, e.g., a collection library.

The current prototype explodes lists into separate value assignments, i.e., a list of two
elements acts as two assignments to a non-list variable. Hence, no order relationship
is captured by the model. Extending PSM via sequential models may alleviate this
limitation. However, the usefulness is subject to the actual application that is realized.

5.4 Threats to Validity

An external threat to validity is given by the number of projects used in the study.
Rigorous internal evaluation and projects of various sizes and types minimize the threat.
Different project sizes control for the expectation that large projects have better or worse
models because of their perceived complexity. Different project types (e.g., PMD as
system or jLatexmath as application software) control for the element type distribution
and their runtime behavior (user vs. synthetic data). Finally, the evaluation models all
eligible code elements and measures the variance across the projects. The NLL across
projects in Tables 5.5 and 5.6 does not hint at a by-chance selection of projects that are
simple to model.

5.5 Conclusion and Future Work

In this work, we presented Probabilistic Software Modeling (PSM), a data-driven approach
for predictive and generative methods in software engineering.

We have discussed applications, pragmatics, construction details, and technical consid-
erations of PSM. We evaluated the viability and usability of PSM on multiple projects
and discussed scenarios that provide insights on how PSM is used. The results have
shown that PSM is not only viable but naturally integrates with software 2.0, i.e., AI
components.

Our future work will focus on the realization and evaluation of applications and their
comparison to the current state of the art.

In conclusion, PSM analyses a program and synthesizes a probabilistic model that is
capable of simulating and quantifying it. The resulting models are repeatable, persistable,
shareable, and quantifiable representations of the program and act as a foundation from
which solutions can be derived.
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6 Case Study: Clones in PLC Programs

Abstract:
The reuse of code fragments by copying and pasting is widely practiced
in software development and results in code clones. Cloning is considered
an anti-pattern as it negatively affects program correctness and increases
maintenance efforts. Programmable Logic Controller (PLC) software is no
exception in the code clone discussion as reuse in development and maintenance
is frequently achieved through copy, paste, and modification. Even though
the presence of code clones may not necessarily be a problem per se, it is
important to detect, track and manage clones as the software system evolves.
Unfortunately, tool support for clone detection and management is not
commonly available for PLC software systems or limited to generic tools with a
reduced set of features. In this chapter, we investigate code clones in a real-world
PLC software system based on IEC 61131-3 Structured Text and C/C++. We
extended a widely used tool for clone detection with normalization support.
Furthermore, we evaluated the different types and natures of code clones in
the studied system and their relevance for refactoring. Results shed light on
the applicability and usefulness of clone detection in the context of industrial
automation systems, and it demonstrates the benefit of adapting detection
and management tools for IEC 611313-3 languages. Furthermore, the results
provide a preliminary context for semantic clone detection discussed in Chapter 7.

Authors:
H. Thaller, R. Ramler, J. Pichler, and A. Egyed

Parts of this Chapter was published at the 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (2017) [1].

6.1 Introduction

The increasing share of software for Programmable Logic Controllers (PLCs) and its
practical importance have recently been acknowledged by the authors of the 2016 ranking
of programming languages in IEEE Spectrum [68]. They found that languages for PLCs
are on the rise, although in contrast to general-purpose languages such as C, C++ or
Java, they specialize in a niche. Yet their relative popularity indicates just how big that
niche really is [68]. With the growing importance of PLC software, an increasing demand
for software engineering best practices and tool support is essential. The focus of this
chapter is on detecting and analyzing code clones in PLC programs.



6.2 Background and Related Work

Code clones are source code fragments that have been duplicated for reuse, e.g., by
copying and pasting [69]. Code clones have the reputation to negatively affect program
correctness [70] and to increase maintenance efforts [69]. This form of reuse is widely
considered an anti-pattern in software development [71] and clones are treated as a bad
smell in code [72]. Recent studies have shown that there are various reasons why code
clones are introduced and that the presence of clones is not per se a problem. However,
the ability to detect, track and manage clones as the software system evolves is of the
essence in successful software development [73].

PLC systems are no exception in the discussion of clones as reuse in the industrial
automation domain is often achieved through cloning and modifying of existing software
systems or sub-systems[74]. This is caused by technological restrictions introduced by
programming languages such as the lack of inheritance or polymorphism, organizational
limits like time constraints, or simply by the system’s complexity. Furthermore, cloning is
often used as a lightweight software product line strategy to cope with various hardware
options and application environments.

A wide range of tools and techniques for clone detection and management is available
for programming languages such as C, C++ or Java [75]. Similar support for IEC 61131-3
languages is mostly limited to general purpose tools, which lack analysis features that
require the interpretation of the syntactical structure of the analyzed language. The
contributions of this chapter are as follows:

• Quantitative results from a code clone analysis in a real-world PLC software system
consisting of IEC 61131-3 Structured Text (ST) and C/C++.

• The extension of the widely used clone detector Simian [76] with language support
for Structured Text.

• A comprehensive study on the relevance and natures of the found clones.

• An assessment of whether language support in clone detectors is of importance or
not.

6.2 Background and Related Work

Duplicating code fragments during software development activities has a long history.
Definitions, taxonomies, tools for detecting, analyzing, visualizing and managing code
clones exist for several languages and technologies. The interest in code clones is also
reflected in the wealth of existing research and the widespread use of tools and techniques
in quality management and continuous integration.

Clone pairs and clone classes [69] are basic terms used in the context of clone detection.
A clone pair describes two code blocks, also called fragments, that are equal according
to a similarity operator. A clone class is the set of all blocks that are equal according
to a similarity operator, effectively forming an equivalence class. Figure 6.1 shows an
example for a clone pair formed by Block 1 and Block 2, where the similarity operator
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of similarity.

6.2.1 Clone Taxonomy

A taxonomy based approach helps to align the understanding of code clones, complemen-
tary to existing definitions. The typical and most frequently used categorization of code
clones [75, 78, 69] is:

Type 1 (Exact Clones): Program fragments that are identical except for variations in
whitespace and comments.

Type 2 (Parameterized Clones): Program fragments that are structurally/syntactically
similar except for changes in identifiers, literals, types, layout and comments.

Type 3 (Near-Miss Clones): Program fragments that include insertions or deletions in
addition to changes in identifiers, literals, types and layouts.

Type 4 (Semantic Clones): Program fragments that are functionally similar (i.e. per-
form the same computation) without textual similarity.

These types yield basic insights into the vague term of similarity in the code clone
definition. Code fragments can be similar based on their textual representation (Type
1-3) or can have similar functionality without textual similarities (Type 4). Type 1 and
2 clones are the focus in this chapter. Code clone types also characterize the accepted
difference between code fragments participating in a clone, and they further define
capability levels of detection tools.

6.2.2 Clone Tools

Clone detection tools can be categorized into detection, analysis and management tools,
which are often integrated into quality management platforms. Detection tools find code
clones; the results are then filtered, visualized and categorized by means of analysis tools.
Management tools track existing clones and their evolution to make them an integral
part of the quality management process.

Detection tools can be basically categorized into text, token, tree, graph, metrics
and model-based tools or hybrid approaches [78, 75]. Text-based detectors use string-
matching algorithms to find similar source code parts. Token-based methods leverage
lexical analysis to extract token sequences fed into a suffix-tree/array to discover clones.
Tree-based tools expose the abstract syntax tree to apply tree similarity algorithms.
Each approach has advantages and disadvantages that often limit their capabilities in
detecting certain clone types. Text-based tools can only detect Type 1 clones and by
using language dependent normalizations their capabilities improve up to Type 3 clones.
Tree-based tools use computational intensive algorithms but can detect clones up to
Type 3. To summarize, detection tools are the basis of clone detection and differ in
their algorithmic interpretation of source code, which ultimately affects their capabilities.
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A detailed overview of detection tools is given by Bellon et al. [75], Koschke [79], and
Rattan et al. [78].

Clone analysis is concerned with filtration, visualization, and categorization of clones
and is often tightly coupled with clone management. Common visualizations are tree
maps and scatter plots [80, 81, 82, 83, 84], but also parallel plots [85] are used. A tree
map uses interactive tiles that reflect the directory hierarchy colored according to their
duplication intensity. Scatter plots enumerate files along the x and y-axis where each
data point reflects a duplication relationship. The combination of both provides insight
into the clone relationship between but also the clone intensity within files. Filtering
and ranking of clones help to organize the typically large result sets of detectors. This
is done manually in conjunction with visualizations or automatically based on metrics
and predefined criteria. For instance, Gemini [83] or CLICS [86, 87] are tools that
make use of metrics and filtering criteria to provide the most relevant subset of clones.
Categorization sorts clones into views such that the inspection can be focused on a specific
task. These views may be related to the location (Same File, Same Directory, etc.), the
region (Function to Function Clones, Macro Clones, etc.), or the block classification
(Initialization Clones, Loop Clones, etc.) [86] of the code fragments.

Management tools help to track the clones such that they can be actively incorporated
into quality assessments and architectural decision processes, but also to evaluate their
evolution. This is especially important with the increased demand of modularization in the
machine and plant industry [88]. Clones are often deliberately introduced as lightweight
variability mechanism, hence they exceed typically one product life-cycle. One way to
manage these clones is, for example, CloneTracker [89]. It builds a model of the tracked
clones and provides notifications if cloned code is changed or edited simultaneously.
Another example is ECCO, Extraction and Composition for Clone-and-Own [90]. It uses
fork clones in conjunction with a feature model to build a proper Software Product Line
(SPL). This allows active reuse of fork clones as they are transformed into a well-defined
corpus of reusable and combinable modules.

6.2.3 Related Work

Code clones are well investigated by the research community resulting in a good un-
derstanding why source code is copied. Roy and Cordy [69] presented a comprehensive
overview of reasons for cloning extracted from various publications. For instance, Kim et
al. [91] conducted an ethnographic study on the code clone behavior of software develop-
ers by recording the file changes. Not only language limitations forced the developers
to copy code, but developers actively used the copy and paste history to determine the
abstractions within their system. Another example, given by Kapser and Godfrey [92],
describes several forking patterns in which large proportions of the system are copied
in order to enable software ports, specific hardware implementations or (experimental)
variants.

These reasons indicate – in contrast to the incentive earlier publications give [93, 77,
80, 94, 95, 96, 97, 70] — that code clones are not universally bad or result of unskilled
programmers. In fact, follow-up publications found quite the contrary [98, 91, 92, 99, 100,
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101, 102, 103, 104], as Rattan [78] reported, especially with respect to the stability and
faults caused by code clones. Possible advantages of clones during development activities
are risk avoidance [69], architectural improvements [92], performance improvements
(e.g., loop unfolding, reduced call overhead) and improved code stability [101, 103, 99].
Interestingly many found advantages also show up as disadvantage indicating that
measuring the impact of clones is a non-trivial task. Concluding, it is clear that it
depends on more than just whether code is duplicated to make statements about the
quality of a system. Nevertheless, awareness and suitable methods to track and process
clones are recommended, so that benefits of cloning can be leveraged and drawbacks can
be mitigated.

6.3 Industry Context

The work described in this chapter was conducted with our industry partner, a large high-
tech company in the domain of machinery for metal processing. Together we analyzed
a pre-release version of a machine control software system. It consisted of modules
implemented in the IEC 61131-3 language Structured Text and modules written in the
C/C++ programming language. The total size of the software system was 191 kLOC
(Lines Of Code, LOC) with 157 kLOC in ST and 34 kLOC in C/C++, at the time the
study was conducted. These numbers include only the code authored by our industry
partner.

The software system was part of a large industry project and had already been evolved
over several iterations with an overall development history of more than two years.
In each iteration, major functional extensions were integrated, tested and stabilized.
Furthermore, every iteration also included extensions that added support for different
machine types and hardware variants. It was expected that this evolution led to code
clones, as existing software routines were reused for similar hardware options by following
a simple forking approach. Hence, code fragments up to entire subsystems were copied
from the existing implementation to support the requirements of the new machine types
or hardware variants.

6.4 Code Clone Analysis

We analyzed the PLC software system with Simian [76], a proprietary text-based clone
detector, and evaluated a subset of the found clones. Simian can detect Type 1 clones in
all text sources but incorporates additional normalization features for several common
programming languages. These normalization features were re-implemented for Structured
Text such that all languages used in the studied system (ST and C/C++) could be
analyzed on the same capability level, i.e., Type 2 clones.

The analyzed source code has in total 99 538 C/C++ and 160 132 ST significant
(non-whitespace) lines distributed over 372 C/C++ and 770 ST files. This includes
C/C++ and ST libraries as header files. The source base contains multiple variants of
the system for the different machine types, consequently, large portions of the code are
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Table 6.1: Results of the Simian clone detection on the entirety of the code base including
libraries and definition files.

Language Option Files with Clones Duplicated Lines Duplicated Blocks Total Files Total Sig. Lines

C/C++

Default 257 58,741 1,510

372 99,538
Identifier 334 99,620 4,005

Literal 274 62,051 1,828

Identifier/Literal 340 117,080 4,776

ST

Default 552 43,697 4,591

770 160,132
Identifier 633 105,787 10,930

Literal 558 57,557 5,179

Identifier/Literal 650 133,488 12,291

Clone overlap is allowed
Minimum number of lines = 5

very similar, leading to many clones. Many of these clones are deliberately introduced
and manually managed to simplify the product line aspect of the development process.
Table 6.1 contains the number of duplicated lines, blocks, and files found by the detector.
The clone analysis did allow for clone overlaps in order to find partial copies of variant
files while simultaneously allowing full copies. The number of duplicated lines is strongly
dependent on the minimum number of lines a clone is allowed to have, which was 5
lines throughout the study. This setting is already fairly low but was chosen with the
subsequent study in mind.

6.5 Code Clone Study

A group of experts inspected clones found during the clone analysis (Section 6.4) within
the system of our industry partner (Section 6.3). These inspections evaluated the nature
(type) of the clones as well as their relevance for refactoring in order to help to answer
the following questions:

1. What natures of clones exist within the system?,

2. Is there a difference between the natures between C/C++ and ST?,

3. How does the tool support influence the relevance of clones?, and

4. How does the clone selection approach influence the relevance of clones?

Ultimately, these questions provide the first incentive for developers of PLC software
to adapt existing clone detection tools for IEC 61131-3 languages such as Structured
Text.
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6.5.1 Study Design

A subset of the clone detector results was selected and presented to a group of experts.
The experts inspected the clones and provided an evaluation of each clone with respect
to their nature and relevance. The responses were then analyzed and used to explore the
relationships and occurrences of clones, tool support, selection approach, and languages.

Controlled Variables

The usage of clone detection tools raises some typical questions related to the tool
configuration (normalizations, minimal line length, etc.), as well to the selection approach
used when analyzing the discovered clones. Each answer potentially changes the type of
clones and their perceived relevance. Therefore, it is important to understand the impact
of these variables when managing clones in development and maintenance projects. This
study controls for the variables programming language, tool option, and clone selection
approach.

• Language: Refers to the used programming languages and captures the hetero-
geneity of the system’s code base, which reflects a typical setup in which multiple
technologies are used in concert to solve a complex problem. The used languages
are C/C++ and Structured Text (ST). C/C++ are widespread general purpose
programming languages for “system-near” applications. ST is a high-level block
structured language designed for PLCs defined by the IEC 61131-3 standard. Both
languages are procedural and imperative. They exhibit basic similarities but
nonetheless they differ in syntax and expressiveness.

• Option: Simian offers basic analysis capabilities that can detect Type 1 clones in
any text source. In addition, it provides normalization features for several popular
programming languages to support the detection of Type 2 clones. In this study
the following combinations of options were used: Text (source code is interpreted
as normal text), Identifier (identifiers are normalized to a common symbol), Literal
(literals are normalized to a common symbol), and Identifier + Literal (identifiers
and literals are normalized to a common symbol).

• Selection: Ranking and filtering of clones is used to cope with the usually large
result sets. The (confounding) selection variable reflects this behavior with the
following common clone selection approaches: Random (clones are selected ran-
domly), Lines (clones are selected in ascending order according to the number of
lines they span), Blocks (clones are selected in ascending order according to the
number of blocks they include).

Response Variables

Each clone was evaluated,

1. whether it is relevant for refactoring and,
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Table 6.2: Intraclass Correlation Coefficient (ICC) of the expert responses mea-
sured by a two-way model with a fixed set of k raters.

95% Confidence Interval F Test

Response Type ICC Lower Bound Upper Bound Value df1 df2 Sig

Aspect ICC3k 0.819 0.789 0.845 5.528 479 958 0

Logical ICC3k 0.902 0.886 0.916 10.193 479 958 0

Structural ICC3k 0.962 0.955 0.967 26.080 479 958 0

Syntactical ICC3k 0.505 0.423 0.577 2.019 479 958 0

Relevance ICC3k 0.800 0.767 0.829 4.999 479 958 0

Number of subjects = 480
Number of raters = 3

Two-way consistency averaged-measures ICC

2. to which degree it associates to the four natures: Aspect, Structural, Syntactical or
Logical.

The resulting five response variables are given by a 5-point symmetric Likert scale ranging
from Strongly disagree to Strongly agree with the neutral mid-point Neither agree nor
disagree. This evaluation scheme is based on the findings of Walenstein et al. [105] that
human raters do not agree on whether a clone should be refactored or not as different
developers have different emphasizes. The Likert scale mitigates this issue by avoiding
a binary decision and providing different levels of association and disassociation. Each
response is evenly mapped onto a scale between −1 and 1 and averaged through all raters.
This results in interval scale data with respect to the raters but also to the number of
clones inspected within each group enabling the usage of standard statistical methods
[106].

• Aspect: Clones of this nature contain statements related to cross-cutting concerns,
e.g., debugging, logging, permission and authentication, data monitoring, etc. These
clones are often unavoidable and cannot be removed with common clone refactoring
strategies. Aspect Oriented Programming (AOP) frameworks are a solution to
these clones and a general review on AOP methods is given by Kurdi [107], while
Bengtsson [108] describes an approach specialized for IEC61131-3.

• Logical: Code fragments of logical nature describe an algorithmic unit fulfilling a
specific task. They contain a dense occurrence of computations and operations on
data structures nested within control flow constructs.

• Structural: Code fragments are of structural nature if they exhibit many definitions
and initializations. They build up the structure of a software system. Typical
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examples are class, struct or variable definitions or initializations in header files or
global constant definition files.

• Syntactical: Clones of syntactical nature are the result of text-based detectors
that do not interpret whitespace or syntactical symbols (braces, brackets, etc.). For
example, series of closing braces belonging to deeply nested control flow constructs
may be detected as a clone by a text-based detector.

• Relevance: Relevance captures the likelihood that an expert would issue a refac-
toring of a particular clone in a general maintenance scenario. It reflects the typical
true and false positive classification but avoids the forced binary decision.

6.5.2 Procedures

A subset of the found clones from Section 6.4 was selected and presented to three experts.
Each expert was briefed in the meaning of the response variables. Each rater was free to
evaluate the clones on his own pace and the inspection sessions were done self-managed.
Each of the experts had a very strong background in software engineering. The average
experience of the experts was 11.33 years (SD = 4.04 years).

Evaluation procedures computed the Inter-Rater Reliability (IRR) to quantify con-
sistency and agreement among experts. Further, a linear model was fitted to expose
relationships between the relevance of clones and the other variables. Finally, a set of
hypothesis tests were conducted to give a further incentive on whether tool support
specific for IEC 61131-3 languages are justified.

6.5.3 Evaluation

Overall 480 clones distributed over 32 groups (2 languages × 4 options × 4 selection
approaches) with each containing 15 clones were inspected. This results in a total of 1440
inspections (480 clones × 3 raters) conducted by the experts. A two-way, consistency,
averaged, Intraclass Correlation Coefficient (ICC) measure [109] was used to assess the
reliability of the 1440 inspections with respect to the nature and relevance. Results within
Table 6.2 show that there was a high degree of agreement among the expert ratings
over the 480 clones. The consistency was excellent (Cicchetti interpretation guidelines
[110]), except for the Syntactical nature only being fair (ICC3kSyntactical = 0.505). Given
the high ICC, a minimal amount of measurement error was introduced by the experts
affecting the power of subsequent analysis. Ratings on the syntactical nature were deemed
too erroneous therefore excluded from further analysis.

Figure 6.2 shows the expert averaged inspection result distributions for the natures
Aspect, Logical and Structural as well as for Relevance. The left facet captures inspections
of clones detected only via the Text mode of the detector. On the right facet are
inspections of clones detected with additional normalizations (Support) in place, i.e.,
normalization of identifiers, literals or both. The distributions indicate that the experts
had a clear idea whether a clone is positively associated with a nature or not. This can
be seen by the slim bellies in the neutral region of the response scale.
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Table 6.3: Significance tests of specific contrasts with respect to the depended variable
Relevance.

Contrast 95% Confidence Interval

Language Option Selection Mean Diff. Std. Error Lower Bound Upper Bound Sig.

1 Language Text - Support Selection -0.225 0.034 -0.316 -0.135 4.82 · 10−10 ***

2 C/C++ Text - Support Selection -0.116 0.035 -0.209 -0.023 0.005 **

3 ST Text - Support Selection -0.335 0.058 -0.488 -0.182 6.78 · 10−8 ***

4 Language Option Random - (Blocks, Lines) 0.063 0.027 -0.011 0.136 0.074 .

5 Language Option Lines - Blocks 0.007 0.051 -0.128 0.143 0.985

6 C/C++ - ST Option Selection 0.052 0.031 -0.030 0.136 0.202

7 C/C++ - ST Text Selection 0.217 0.067 0.040 0.394 0.005 **

8 C/C++ - ST Support Selection -0.002 0.030 -0.083 0.079 0.986

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Adjusted p values – free method

theless using the additional support removes this offset and places both into the strong
positive range.

Linear Model

A multivariate linear regression was calculated to predict Relevance based on Language,
Option, Selection but also through the natures Logical and Structural. (Note: Syntactical
has been excluded because of an insufficient reliability of the ratings and Aspect did
not reach significance.) The maximum positive response of Relevance is 1 for a perfect
association, 0 for neutral and −1 for a perfect disassociation. A significant regression
equation was found (F (28, 451) = 40.04, p < 2.2 · 10−16), with an R2 of .713. Interactions
between Language and Option, Option and Selection, and between Selection and the
included natures were significant. Regression residuals show acceptable departures from
normality and parallel lines as a pattern. Patterns were expected because of the Likert
scale being averaged by only three raters. An unacceptable variation in the variances
was detected, therefore heteroscedasticity corrected hypothesis tests were conducted.

The linear model shows a strong positive logarithmic relationship to the number of lines
a clone spans, increasing its relevance by 0.1 for each magnitude in lines. Clones from
ST have a lower base relevance compared to C/C++ clones (−0.22) but strong positive
significant interactions (0.18 − 0.26) with the different options. Similar, interactions
that constitute blocks and normalizations in which identifiers are normalized (Identifier,
Identifier+Literal), are positive significant with estimates between 0.29 − 0.37. All
these coefficients indicate combinations of options, selection methods and languages that
greatly increase the relevance of clones. In terms of nature, there were strong significant
coefficients that represent the interaction between Structural or Logical with the (between
file) blocks selection method.
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Statistical Tests

The planned tests investigated whether there is a statistically significant effect in Relevance
between different groups of clones. Contrasts measure effects within and between
languages given the text mode and the average of all normalizations but also the effects of
selection methods. Table 6.3 contains contrasts and their respective hypothesis tests with
free [111] adjusted p values that account for multiple comparisons. Test 2 and 3 compare
the differences between text mode and additional support within the two languages
where both reach significance, although ST with a larger effect. No marginal significant
effect between random selection, and block or line oriented selection approaches could
be found (Test 4). However, the low p-value and the existence of interactions indicate
that significant effects between specific levels of the variables are present. Tests 6, 7
and 8 represent between language tests with no marginal effect (Test 6). Test 7 shows a
significant difference of clones between the two languages given that they were detected
with the text mode. Test 8 shows that this significance is not found if clones are detected
with additional normalizations.

6.5.4 Interpretation

The results show that the tool support has a positive effect on the relevance of clones.
This can be seen in Figure 6.2 where the median and first quartile moves into the strong
positive region, but also in the hypothesis tests. This positive effect is given in the within
language tests (Test 2 & 3) but also in between languages tests where the initial significant
difference is removed by the additional normalization features. The between language
effect is most likely caused by the header files (.h-files) of C/C++ that introduce more
structural duplicates, which in hindsight are often relevant (linear model coefficient).

The selection approach does not influence the relevance of clones on average. However,
there were positive effects associated with selection methods based on the number of
blocks that are shared between files.

Most clones are of Structural nature and the usage of normalizations increases their
total proportions making them more likely to be encountered. Logical clones are inversely
proportional to structural clones and therefore less often encountered with normalizations.
Clones of Aspect nature are mostly found with a low minimum line count of clones but
remain strongly dependent on the application context. The nature of clones between the
languages is fairly similar with mostly structural clones and some logical clones. ST code
contained more aspect clones nevertheless these are less prevalent if normalizations are
used.

6.6 Threats to Validity

The study faces threats to validity that might reduce the power of the analysis. First,
the generalization of results is limited because only one software system was analyzed.
However, the system is a real-world example and the applied development approach
can be considered representative for many other evolving software systems for industrial
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automation [74]. Furthermore, the choice of the analysis tool and its implementation,
as the experts and their specific background in software development may also have
introduced a bias. Finally, the confounding configuration problem discussed by Wang
[112] might be an issue. We chose the minimal line count for a clone fairly low such that
aspect clones are easier spotted.

6.7 Conclusions

In this chapter, we presented the results from the analysis of code clones in a real-world
PLC software system, which has been evolved over several development iterations as part
of a large industry project. The software system contained code written in C/C++ and
in IEC 61131-3 Structured Text.

We found that clones do exist in PLC software systems regardless of the applied
programming language. Awareness for clones is an important aspect of professional
software development, independent whether they are viewed positive or negative. Industry
projects require support for detecting, tracking and managing clones as software systems
evolve. Similarly to previous studies [74], we can also conclude that the existing tool
support for PLC languages with respect to clone detection is insufficient. Furthermore,
we found that language adaptations for detectors, that enable the use of normalizations,
improve the relevance of clones significantly. This is especially true for maintenance
scenarios focusing on structural deficiencies. Concluding, companies that develop PLC
systems can justify investments in clone detector adaptations. These investments widen
the range of clone detection, analysis and management tools and strengthen professional
software development within the industrial automation industry.

Possible future extensions to the work include methodologies for efficient filtering of
clones based on their nature through complexity metrics and the repetition of the study
on other PLC software systems including systems from different industry partners.

88



7 Case Study: Semantic Clone Detection

Abstract:
Semantic clone detection is the process of finding program elements with similar
or equal runtime behavior. For example, detecting the semantic equality between
the recursive and iterative implementation of the factorial computation. Semantic
clone detection is the de facto technical boundary of clone detectors. This
boundary was tested over the last years with interesting new approaches. This
chapter contributes a semantic clone detection approach that detects clones with
0 % syntactic similarity. We present Semantic Clone Detection via Probabilistic
Software Modeling (SCD-PSM) as a stable and precise solution to semantic
clone detection. PSM builds a probabilistic model of a program that is capable
of evaluating and generating runtime data. SCD-PSM leverages this model
and its model elements for finding behaviorally equal model elements. This
behavioral equality is then generalized to semantic equality of the original
program elements. It uses the likelihood between model elements as a distance
metric. Then, it employs the likelihood ratio significance test to decide whether
this distance is significant, given a pre-specified and controllable false-positive
rate. The output of SCD-PSM are pairs of program elements (i.e., methods),
their distance, and a decision whether they are clones or not. SCD-PSM yields
excellent results with a Matthews Correlation Coefficient greater 0.9. These
results are obtained on classical semantic clone detection problems such as
detecting recursive and iterative versions of an algorithm, but also on complex
problems used in coding competitions. Semantic clone detection is the process
of finding program elements with similar or equal runtime behavior.
Authors:
H. Thaller, L. Linsbauer, and A.Egyed

Parts of this chapter was published at the 14th International Workshop on Software
Clones (IWSC), London, ON, Canada (2020) [3].

7.1 Introduction

Copying and pasting source code fragments leads to code clones that are considered an
anti-pattern. Code clones increase maintenance costs [96, 98], promote bad software design
[113, 72, 114], and introduce or propagate bugs [115, 116, 117]. However, duplicating
code fragments allows faster adaption to requirements, the reuse of stable and well-
tested solutions [99, 100], and helps to overcome language limitations [92, 69] lowering
development costs. The impact of code clones and the contradicting evidence various
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studies provide are the topics of an ongoing discussion in the community. However,
developers will continue duplicating source code to leverage their benefits despite their
drawbacks. The key is the awareness and management of clones to maximize efficiency
while balancing quality.

Traditionally, the clone taxonomy distinguishes between four types of clones [69, 75, 78].
Type 1-3 describe code clones caused by copying and pasting the source code with or
without changes. Type 4 clones describe code clones that do not have any syntactic
similarity but implement the same functionality (semantic equivalence). For example,
the recursive and iterative implementation of an algorithm (e.g., Fibonacci computation)
have no syntactic similarity while implementing the same functionality. Existing tools
have limited or no capabilities to detect Type 4 clones [118]. Most current studies exclude
Type 4 clones because of the lack of tool support [119, 69, 75, 120, 121]. Nevertheless,
Type 4 clones exist, and recent research efforts try to deepen the understanding of
them [118, 122, 123]. This chapter provides a significant contribution to semantic clone
detection in the form of novel concepts and a prototype implementing them.

We present Semantic Clone Detection via Probabilistic Software Modeling (SCD-PSM).
SCD-PSM extends on the Probabilistic Software Modeling (PSM) framework presented
in Chapter 4 via a semantic clone detection pipeline. PSM builds probabilistic models
(PMs) from programs. It analyzes the static structure and dynamic runtime behavior
and replicates the program in the form of a generative probabilistic model. These models
allow developers to reason about a program’s semantics via causal reasoning. SCD-PSM
extends this work by leveraging the PMs and causal reasoning to find semantically (i.e.,
behaviorally) equivalent code elements (e.g., methods or properties with similar runtime
behavior). SCD-PSM allows full quantification of the behavioral distance of code elements
via likelihoods (i.e., probabilities). Furthermore, the likelihood evaluation via PMs allows
for statistical significance tests (i.e., likelihood ratio test) to decide whether a pair of code
elements are clones or not. SCD-PSM detects semantic clones with no textual similarity,
such as the iterative and recursive version of an algorithm mentioned above. The average
performance of the approach reaches a Matthews Correlation Coefficient of 0.965 on the
dataset indicating a robust method for semantic clone detection.

Section 7.2 provides the background needed to understand SCD-PSM including the
basics of PSM. Section 7.3 clarifies what semantic clones are in the context of this chapter.
Section 7.4 presents the approach in which representation, search space, and the various
similarity stages are described. The study in Section 7.5 evaluates the approach and
Section 7.6 discusses its results. Limitations of the approach and possible threats to
validity of the study are given in Section 7.7 and Section 7.8. Section 7.9 sets the results
in context of the current state-of-art and Section 7.10 concludes this chapter.
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1 int fa(int n){

2 product = 1

3 for(i = 1; i <= n i++)

4 product *= i

5 return product

6 }

Listing 7.1: for-loop implementation of factorial

1 int fb(int n){

2 product = 1

3 i = 1

4 while (i <= n)

5 product *= i

6 i++

7 return product

8 }

Listing 7.2: while-loop implementation of factorial

1 int fc(int n){

2 if(n <= 1) return 1

3 return fc(n - 1) * n

4 }

Listing 7.3: Recursive implementation of factorial

1 int fd(int n, String guard ){

2 if(n < 1 && guard == "val") return -1

3 if(n < 1 && guard == "throw") throw Exception ()

4 return fc(n)

5 }

Listing 7.4: Delegate implementation of factorial

7.2 Background

The clone detection research community has a long history and defines many concepts,
algorithms, and tools. In contrast, Probabilistic Software Modeling (PSM) is relatively
new and combines software engineering and probabilistic modeling. Some terms need
clarification; others require an introduction if they diverge from their traditional domain
names.

7.2.1 Clone Detection

Clone detection is the process of finding two similar program fragments. Listings 7.1
to 7.4 are four different implementations of the factorial function (n!). Listing 7.1 is
a for-loop implementation, Listing 7.2 uses a while-loop, and Listing 7.3 is recursively
defined. Finally, Listing 7.4 delegates its implementation to fc() from Listing 7.3 but
may also return −1 in case of invalid inputs (including n = 0).
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Clone detection revolves around the representation, pairing, and the similarity evalua-
tion. Representations can be, e.g., text, graphs (e.g., AST), or probabilistic models like
in this work. Pairing describes the selection of two fragments that are potentially clones
(e.g., fa() and fb()). Each pair is called a candidate clone pair (or candidate pair). The
similarity evaluation measures the similarity between the fragments of a candidate pair
(e.g., counting the number of different characters). Finally, the clone decision labels the
candidate pair as a clone or not given a criterion on the similarity (e.g., less than ten
different characters).

The properties of the similarity metric split clones into two groups [69]. Type 1-
3 clones capture textual similarity while Type 4 clones capture semantic similarity
[75, 119, 124, 69, 78, 1].

Type 1: (Exact Clones) Program fragments that are identical except for variations in
white-space and comments.

Type 2: (Parameterized Clones) Program fragments that are structurally/syntactically
similar except for changes in identifiers, literals, types, and comments.

Type 3: (Near-Miss Clones) Program fragments that include insertions or deletions in
addition to changes in identifiers, literals, types, and layouts.

Type 4: (Semantic Clones) Program fragments that are functionally/semantically sim-
ilar (i.e., perform the same computation) without textual similarities.

These types are increasingly challenging to detect, with Type 4 being the most complex
one. Note, that the definition of Semantic Clones is often relaxed where up-to 50%
syntactic similarity of the code fragments is allowed (e.g., BigCloneBench [120]). However,
we consider these clones as complex Type 3 clones (additions, deletions, reordering) and
not as semantic clones. This means that semantic clones in the context of this work
are clones with no syntactic similarity except for per-chance similarities (e.g., similar
parameter names).

We will use a ≃ b to denote that a is a clone of b. Furthermore, a 6≃ b denotes that a
is not a clone of b.

7.2.2 Programs & Code Elements

PSM generalizes object-oriented terms to describe code elements in a program. Code
elements are types T , properties Pr, and executables Ex that refer to, e.g., classes, fields,
and methods in Java [32], or classes, properties, and functions in Python [28].

Additional code elements are parameters Pr and results Re of executables that refer
to parameters (arguments) and return values of a method. Properties, parameters, and
results are atomic code elements that have identifiable states at runtime. Types and
executables are compositional elements that act as a collection of atomic elements.

Types declare properties and executables, capturing structural relationships. Executa-
bles have behavioral relationships that are categorized into Inputs (I) and Outputs (O).
Inputs are received parameters PaI , read properties PrI , and requested invocation results
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ReI . Outputs are returned executable results ReO, written properties PrO, and provided
parameters PaO.

We will denote atomic elements in lowercase, and compositional elements in bold-
face lowercase, e.g., n and fa in Listing 7.1. Executable results are named after their
executables, e.g., fa in Listing 7.1. fc = {nPa,I , fcRe,I , fcRe,O} denotes the code
elements of Listing 7.3. For readability’s sake, we will omit the superscript classifiers
if it is unambiguously possible e.g., fa = {n, fa}. The subset of inputs is denoted by
fcI = {nPa,I , fcRe,I} and outputs by fcO = {fcRe,O}. Finally, the set of all input and
output combinations is given by

exIO = {(i, o) ∈ exI × exO}. (7.1)

For example, fdIO = {(n, fd), (guard, fd)} describes the IO pairs of fd().

7.2.3 Probabilistic Software Modeling

Probabilistic Software Modeling (PSM) [125] is a data-driven modeling paradigm that
transforms a program into a probabilistic model. PSM extracts the structure and
behavior of a program. The structure are the code elements of the program as described
in Section 7.2.2. This includes the actual elements, but also their call and structural
hierarchy. The behavior is the runtime of the program, i.e., the actual data that is
transformed by the program. The resulting PM and its model elements (i.e., random
variables) is a copy of the original program with its code elements.

Model elements are the code elements in the context of a PM, and there is a one-to-one
relationship between them. We will reuse the notation of code elements for model
elements and augment it via probabilities. P (x) denotes the probability distribution
of variable x, e.g., Pfa(n) denotes the probability distribution of input parameter n
of the fa-method. p(x) denotes the probability of a specific event of a variable, e.g.,
pfa(n = 2). The notation of code elements and model elements is very similar. However,
model elements reasons about the behavior of code elements instead of their structural
properties.

Model elements can generate observations (i.e., runtime events), but also evaluate their
likelihood. Each model element is a flow-based latent variable model [30] that learns an
invertible mapping between the original observations and an isotropic unit norm Gaussian
N (0,1) with f : X 7→ Z. An example for x ∈ X may be n ∈ fa with nz ∈ faz being its
latent Gaussian representation. The Guassian latent space enables the model elements
to generate new samples and evaluate the likelihood of samples.

Generation (or Sampling) draws, either marginally or conditionally, observations from a
model element simulating the execution of the corresponding code element. For example,
drawing 100 observations from fa ∼ Pfa(n, fa), i.e., values for nI and faO, simulates
100 program executions of this method. An example for conditional generation would be
fa|n<10 ∼ Pfa(fa | n < 10) that only draws observations where n < 10. The process
involves sampling from the latent Gaussian variables, and inverting the Gaussian samples
to the original domain via the flow f−1(z) = x. Evaluation takes observations and
evaluates their likelihood under a model element. For example, Pfa(n = 4, fa = 24)
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evaluates the likelihood of input 4 and output 24 under the fa model element. Intuitively,
it asks the model how likely is the method fa called with 4 while returning 24. The
process of evaluation involves mapping a given sample into the latent space and evaluating
it under the Guassians pN (0,1)(f(x)). Generation and evaluation are the core of any
PSM applications and of SCD-PSM. How generation and evaluation work in detail and
from a technical perspective is given by Thaller et al. [126].

7.3 Semantic Clones

A clear understanding of what SCD-PSM defines as semantic clone is essential in
understanding the approach and its design choices.

Definition 5. A semantic clone is a pair of executables whose (partial) input, and output
relationships exhibit significant (conditional) similarities.

Definition 5 defines semantic clones over the similarity between IO relationships of
executables. This holds if the IO relationships are only partially similar, i.e., not all
combinations of IO pairs between executables have to be similar. For example, fd in
Listing 7.4 has two IO pairs (fdIO = {(n, fd), (guard, fd)}) while fa in Listing 7.1
has one IO pair (faIO = {(n, fa))}). According to the definition, at least one IO pair
comparison needs to be similar such that both executables are declared as a semantic
clone (e.g., (n, fd) ≃ (n, fa)).

Furthermore, the similarities between IO pairs may only be conditional, i.e., the
similarity of matching IO pairs might be depending on the state of any other code
element in the comparison context. For example, the IO pair (n, fd) ≃ (n, fa) is only a
perfect clone in case that fd.guard != "val". If fd.guard == "val" the IO behavior
would differ in case of n = 1 (fd(1) 7→ −1 while fa(1)7→ 1). According to the definition,
at least parts of the behavior need to be similar, capturing complex multidimensional
behavioral patterns in IO relationships.

The rationale behind the comparison of IO relationships is one of cause and effect. If a
pair of executables exhibit similar effects given similar causes, then their computational
behavior is identical. Extending this rationale by multiple inputs and outputs results in
multiple IO relationships leading to partial conditional similarity.

7.4 Approach

Figure 7.1 illustrates SCD-PSM. It is a five-fold approach in consisting of the following
steps:

A. [Modeling] PSM builds a probabilistic model that reflects the original program;

B. [Search Space] A search space of candidate pairs is constructed by pairing
executable model elements;

C. [Static Similarity] The static similarity accepts candidate pairs with matching
data types;
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The second step in Figure 7.1 builds a within- and between-executable space that SCD-
PSM searches for clones. The Between-Executable Space (BES) is the set of executable
combinations

BES = {{a, b} ∈ Ex×Ex | a 6= b}, (7.2)

where exa, exb is a candidate pair (or executable pair), and Ex is the set of all
executables in the current analysis (illustrated in Figure 7.2). The theoretical size of the
between-executable space are all 2-length combinations without replacement given by

|BES| =
|Ex|!

2 · (|Ex| − 2)!
, (7.3)

where |·| describes the size of the underlying set. Note that the size of the BES is smaller
than the Cartesian product since {a, b} = {b, a}. Figure 7.1 shows this paring process in
the Search Space aspect (2). The Within-Executable Space (WES) is the product of IO
pairs

WESab = {(i, j) ∈ aIO × bIO}. (7.4)

Figure 7.2 illustrates the WES and one IO pair from the WES that we also call link. The
theoretical size of the within-executable space is

∣∣∣WESab
∣∣∣ =

∣∣∣aIO
∣∣∣ ·

∣∣∣bIO
∣∣∣ (7.5)

For the sake of visualization IO pairs are not shown in Figure 7.1 but are abstracted in
their executable elements. The maximum theoretical search space is

S =
∑

i

|wes(BESi)| , (7.6)

given that wes describes a construction function according to Equation (7.4), and BESi
is the i’th candidate pair.

In practice, SCD-PSM evaluates only a fraction of possible combinations because of the
skip evaluation. The skip evaluation consists of two search space limiting factors: greedy
evaluation and transitive similarity. Greedy evaluation stops the search through the WES
once a similar pair is found. The initial detection process is only interested in whether
there is a similarity or not. Post-analysis can then find all possible similarities for the
program comprehension and developer guidance. Transitive similarity skips evaluations
in the BES because if a ≃ b ≃ c then also a ≃ c holds. In sum, skip evaluation allows for
efficient processing by stopping the search through the WES once a clone pair is found,
and by skipping pairs in the BES if the transitive similarity is given.

In conclusion, SCD-PSM compares IO pairs of executable model elements and uses
greedy evaluation and transitive similarity to traverse the search space efficiently.

7.4.3 Static Similarity

The static similarity stage is a filter that accepts candidate pairs based on their data
type, as shown in Figure 7.1. Data types in a PSM model are integers, floats, and text.
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Input (3) of the stage are the IO pairs WESab = wes({a, b}) of a candidate. The
filter criteria (4) accepts a candidate pair if at least one link (i.e., IO pair) has a matching
data type, i.e., the input but also the output have a matching data type. Output (5) is a
boolean decision whether the candidate pair is a clone or not from a static viewpoint. If
positive, then the candidate pair is moved to the next pipeline stage, i.e., the Dynamic
Similarity evaluation (see Figure 7.1). If negative, then the candidate pair is marked as
being not a clone a 6≃ b and no further processing is conducted. For example, the IO
pairs (n, fa) ≃ (n, fb) would be statically accepted as clones as both inputs and outputs
have the same data type (integer). A counterexample is given by (n, fa) ≃ (guard, fd)
where the input data types are integers and text.

The static similarity indicates that the analyzed program is given in a programming
language that allow for static analysis. Programs written in programming language
without static typing can not make use of this filter stage. In conclusion, the static
similarity stage filters candidates based on their data type.

7.4.4 Dynamic Similarity

The dynamic similarity stage is a filter that accepts candidate pairs based on the runtime
data, as shown in Figure 7.1.

Input (6) of the stage are again the IO pairs of a candidate as in the static similarity
Section 7.4.3. The filter criteria (7) accepts a candidate pair if at least one IO pair has
an insignificant diverging runtime distribution. The divergence of inputs and outputs can
be computed via univariate statistical tests. This work uses the Kolmogorov-Smirnov test
[67], which is a general non-parametric test. Output (8) is a boolean decision whether
the candidate pair is a clone or not from a dynamic viewpoint. Again, the candidate
is removed from the pipeline or forwarded to the next pipeline stage, depending on
the decision. For example, the IO pair (n, fa) ≃ (n, fd) with guard == true fails
the filter given that runtime events with n = 0 reach a critical mass. In comparison,
(n, fa) ≃ (n, fb) would be accepted by the stage.

A requirement is that the candidates use a synthetic trigger. Otherwise, the comparison
of the data distributions may fail because of the different modus operandi of the program.
For example, running fa and fb where nfa = U(0, 4) and nfb = U(5, 10) would cause the
dynamic stage to fail even if the implementations are equivalent. Property-based testing
[127] can be used for this purpose to generate diverse synthetic inputs.

In conclusion, the dynamic similarity pre-filters candidates based on univariate tests
on the input and output events.

7.4.5 Model Similarity

The model similarity stage is a filter that accepts candidate pairs based on the model
data, as shown in Figure 7.1. The model data is sampled from the models of the
executables in the candidate pairs. This stage conducts a multivariate test as opposed to
the univariate test the dynamic similarity computes. The multivariate testing considers
the conditional similarities that are not part of the currently inspected IO behavior but
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maybe conditionally influencing the IO pair. For example, (n, fd) ≃ (n, fa) holds but
is conditionally dependent on guard. The dynamic stage can only look at the marginal
(i.e., average) behavior of the IO pair, while the model similarity can factor guard into
its decision.

Input (9) are the IO pairs of a candidate WESab = wes({a, b}). Then the cross-wise
log-likelihood ratio of the models is computed by (conditional) generation and evaluation.
Output is a boolean decision whether the candidate pair is a clone or not from a model
viewpoint. Figure 7.1 illustrates the entire process of the model similarity.

(A) A reference model Mnull = a and an alternative model Malt = b (candidate pair
executables).

(B) A IO-pair p = WESabi is selected that is target of the comparison (link).

(C) A reference sample Dnull is drawn from Mnull (10).

(D) An alternative sample Dalt|null is drawn from Malt by optimizing towards the p
dimensions in the Dnull effectively conditioning the drawn samples (11).

(E) Dnull is evaluated under Mnull resulting the reference log-likelihood LLnull

(F) Dalt|null is evaluated under Malt (12) yielding the alternative log-likelihood LLnull.

(G) Finally, likelihood ratio of the link is computed

λ = LLalt − LLnull (7.7)

This procedure is repeated for the reverse assignment of null and alt roles. Finally, both
log-likelihood ratios are combined by a pooling operator into the final decision (14).

The role-swap is needed to avoid sub-model relationships. For example, if Mnull =
N (0, 3) and Malt = N (0, 1) then LLalt will be very high because Malt is a sub-model
from Mnull. However, reversing the roles highlights the differences in the models.

The final decision is based on the Generalized Likelihood Ratio Test (GLRT) [11].
It measures whether the log-likelihoods are significantly different from 0 where λ (see
Equation (7.7)) is the test statistic. The null hypothesis is that the models are significantly
different and rejects for small ratios λ ≤ c where c is set to an appropriate Type 1 error
(false-positive rate). For example, λ < log(0.01) allows 1 out of 100 candidates to be a
false-positive, i.e., wrongly rejecting semantic equivalence. The pooling operator combines
the link results either via hard or soft pooling. Hard pooling conducts for both links a
GLRT yielding a positive decision if both links are positive. Soft pooling averages the
link log-likelihoods ratios and then computes the GLRT yielding a positive decision if
the joint GLRT is positive. Hard pooling does not allow any sub-model relationships,
while soft pooling relaxed this constraint.

In conclusion, the model similarity conducts a multivariate significance test between
two models, including possible conditional dependencies.
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7.5 Study

This study answers the following research questions.

RQ1 Does behavioral equality between model elements generalize to semantic equality
of code elements?

RQ2 Does the skip evaluation significantly reduce the computational demand of SCD-
PSM?

RQ3 Does the skip evaluation negatively impact the detection performance (i.e., precision,
recall, and MCC)?

RQ1 answers the essential question if semantic clones can be detected via SCD-PSM.
RQ2 answers whether the search space can be efficiently processed using skip evaluation.
RQ3 answers the question of how the skip evaluation influences the performance of the
detection process. This is important because candidate pairs might be skipped based on
false-positives or false-negatives.

7.5.1 Setup

We implemented a prototype for SCD-PSM on top of Gradient [125], a prototype for
PSM. The elements and data flow of the detection process are shown in Figures 7.1
and 7.2.

1. The input Source Code were 13 different clone classes with a total of 108 imple-
mentation variants (see Table 7.1). This includes classical algorithms implemented
recursively and iteratively (e.g., bubble sort), but also hard problems from the
programming competition Google Code Jam1.

2. The Probabilistic Model (i.e., the inference graph) was computed via Gradient, a
PSM prototype. We used the same hyper-parameters as reported in Table 5.1. The
inference graph is a truncated inference graph not modeling types as they are not
needed in a comparison between executables.

3. The Search Space, i.e., the BES and WES, was created according to Section 7.4.2.

4. Each valid candidate pair was then submitted to the Static-, Dynamic, - and
Model-Similarity and filtered according to Sections 7.4.3 to 7.4.5. Candidates that
passed the entire filter pipeline were marked as clones.

7.5.2 Dataset

The study uses three well-known algorithms and 10 Google Code Jam 2017 (GCJ)1

problems as listed in Table 7.1. The total dataset contains 108 implementation variants
across 13 clone classes described by Instance.

Each clone class was differentially tested to verify the behavior across instances.
Factorial, Fibonacci, and Sort do not need any further explanation. The GCJ problems
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Table 7.1: Semantic clone detection dataset consisting of 108 instances across 13 clone
classes.

Source Code Clone

Problem Type Property Executable Parameter Loc Class Instance

Factorial 2 0 4 2 21 A 2

Fibonacci 2 0 4 2 10 B 2

Sort 4 0 12 18 110 C 4

R0AA 11 4 39 54 384 D 10

R0AB 10 0 33 27 374 E 10

R0AC 12 4 32 45 433 F 10

R1AA 10 0 26 41 543 G 10

R1AB 13 8 28 55 595 H 10

R1BA 12 4 31 53 269 I 10

R1CA 17 18 35 62 463 J 10

R1CB 15 18 34 82 772 K 10

R1CC 10 0 21 41 338 L 10

R2AA 10 0 23 18 471 M 10

128 56 322 522 4783 13 108

are well specified complex optimization problems packaged in an everyday theme. R0AA
in Table 7.1 is the round 0 (qualification), category A, and task A problem. It asks
developers to compute the minimum amount of flips of pancakes that are needed for all
pancakes to be on the upside. The constraint is that always k pancakes are flipped at
the same time.

The dataset contains in total 5778 (see Equation (7.3)) candidate pairs of which 458
are semantic clones and 5320 are not. This yields a positive to negative ratio of 1/11.6,
indicating a highly imbalanced distribution. A similar or even more pronounced imbalance
is to be expected in real-world applications.

Each instance was triggered with input data to allow PSM to model the different
implementations. Factorial, Fibonacci, and Sort were triggered by sampling from a
uniform distribution U(0, 20). GCJ problems were triggered by the input data provided
by the competition. Each instance received the same trigger.

GCJ problems read from and write to the standard stream, which is impractical in
terms of reproducibility. Our dataset is constructed such that each implementation has
a run-method representing the cloned executable. The study results are limited to the
run-method even if the solutions use helper methods. Helper methods, e.g., may be
methods that compute parts of the final solution, or reorganize the data. This guarantees
a proper problem scope, well-defined recall and precision values, and a clearly defined

1https://codingcompetitions.withgoogle.com/codejam/archive
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benchmark for future reproducibility.

7.5.3 Controlled Variables

The study controls for the search space Evaluation strategy, Dynamic False-Positive Rate
(D-FPR), Model False-Positive Rate (M-FPR), and Pooling.

Evaluation describes how the search space is processed: exhaustive, or skip. The ex-
haustive evaluation compares each executable candidate with each other. The skip
evaluation uses the transitive similarity (see Section 7.4.2) and may skip evaluation
if possible.

Dynamic False-Positive Rate (D-FPR) defines the critical value α of the Kolmogorov-
Smirnov test with 0.001 and 0.01 at which similarity is rejected.

Model False-Positive Rate (M-FPR) defines the critical value c of the Generalized
Likelihood Ratio test with 0.001 and 0.01 at which similarity is rejected.

Pooling defines how the likelihood ratios from the two link directions are combined (see
Figure 7.1, (8)) with values: hard, or soft. Hard pooling evaluates whether each
link reaches the critical value c and accepts the clone if both links evaluate positive.

λLinkA
≤

log c

2
and λLinkB

≤
log c

2
(7.8)

Soft pooling evaluates the average log-likelihood ratios (geometric mean of likeli-
hoods)

λLinkA
+ λLinkB

2
≤ log c, (7.9)

and compares it against the critical value c.

An additional fixed parameter is the number of particles. Number of particles defines the
samples size that is generated during the model similarity |D| = 50.

7.5.4 Response Variables

The response measures of the study are the number of Skip Evaluations, processing
Duration, TP, FP, TN, FN, Precision, Recall, F1, and Matthews Correlation Coefficient.

Skip Evaluations measures the number of evaluations that were skipped because of the
skip evaluation strategy.

Duration measures the elapsed time to compute one candidate pair.

TP, FP, TN, FN measures the True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN) detection results compared to the ground truth.
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Precision measures the fraction of detected clones that are truly clones

TP

TP + FP
. (7.10)

Recall measures the fraction of semantic clones that have been found

TP

TP + FN
. (7.11)

F1 measures the accuracy of a binary classification as the harmonic mean of recall and
precision

2 ·
precision · recall

precision+ recall
(7.12)

Matthews Correlation Coefficient (MCC) measures the quality of the clone detection
in form of a correlation ranging from −1 to 1 with 0 being a random selection. The
MCC will be the reference performance metric as it is the most robust metric in an
imbalance binary classification setting [128]. It is a correlation coefficient which
may be interpreted by the guidelines proposed by Evans [129].

TP× TN− FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (7.13)

7.5.5 Comparison Approaches

In total, eight alternative approaches are used to provide some context to the performance
of SCD-PSM. The selected tools have a large variety in terms of internal representation
and clone detection capabilities as listed in Table 7.5. ASTNN (8) and ASTNN Leaky
(9) is the same approach but have different evaluation methods. ASTNN Leaky (9)
uses a random split of the dataset as reported by the authors [130]. ASTNN Leaky
overestimates the performance of the approach as code fragments belonging to a clone
class are present in the training and test proportion of the dataset. For example, fa ≃ fb
and fa ≃ fc might be in the train split while fb ≃ fc might be in the test split. ASTNN
(8) uses a group-wise Cross Validation (CV) where clone classes are entirely isolated
either into the training or test proportion of the dataset. This represents a real-world
situation were first the detector is fitted and then applied to a new system with unknown
code fragments.

Detectors that report lines instead of methods may produce more results (TP, FP,
TN, FN) than present in the dataset. Similarly, the ASTNN Leaky uses CV which
also produces different quantities as the approach is evaluated repeatedly on different
proportions of the dataset.

7.5.6 Experiment Results

Creating the PSM model with Gradient took 2134.38 s, resulting in an average modeling
time of 19.75 s for the 195 executables. This includes 87 helper methods.
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Table 7.2: Results of the top-5 and bottom-1 experiment along with the average perfor-
mance of the top-5.

Controlled Variables Response Variables

Nr Evaluation D-FPR M-FPR Pooling Duration TP FP TN FN Skip Precision Recall F1 MCC

1 skip 0.100 0.001 soft 1560 437 0 5320 21 345 1.000 0.954 0.977 0.975

2 skip 0.010 0.001 soft 1620 437 0 5320 21 345 1.000 0.954 0.977 0.975

3 exhaustive 0.010 0.001 soft 1680 425 0 5320 33 0 1.000 0.928 0.963 0.960

4 skip 0.010 0.010 soft 1920 423 0 5320 35 332 1.000 0.924 0.960 0.958

5 exhaustive 0.100 0.001 soft 2040 421 0 5320 37 0 1.000 0.919 0.958 0.955

16 exhaustive 0.100 0.010 hard 2820 293 0 5320 165 0 1.000 0.639 0.780 0.787

1-5 skip 0.010 0.001 soft 1740 428 0 5320 29 340 1.000 0.936 0.967 0.965

Duration in seconds

Table 7.3: Performance breakdown of the best performing experiment listed as Nr. 1 in
Table 7.2.

Stage Duration TP FP TN FN Precision Recall F1 MCC

initial – 458 5320 0 0 0.079 1.000 0.147 –

static 0.0001 458 1504 3816 0 0.233 1.000 0.379 0.409

dynamic 0.208 451 50 5270 7 0.900 0.985 0.941 0.936

model 1.749 437 0 5320 21 1.000 0.954 0.977 0.975

0.344 437 0 5320 21 0.996 0.954 0.977 0.975

Duration in seconds

Table 7.2 contains the aggregate results of the top-5 experiments along with the results
of the worst experiment. The bottom line in Table 7.2 is the average performance of the
top-5 experiments. The generally expected performance of the approach very strong with
an MCC of 0.965. High confidence for negative examples is given with no false-positives
reflecting the pipelines FPR rates (D-FPR × M-FPR).

A multiple linear regression was calculated to predict MCC based on the control
variables: evaluation, D-FPR, M-FPR, and pooling. A significant regression equation
was found shown in Table 7.4 (F (4, 11) = 39.8, p < 0.01), with an R of 0.911. MCC
increased by 0.056 for the skip evaluation and by 0.080 for soft pooling. Larger D-FPR
and M-FPR decrease the MCC by −0.042 and −5.455. All predictors were significant
(p < 0.01) except for D-FPR.

The best experiment is given with a skip evaluation, 0.100 D-FPR and 0.001 M-FPR
rates, and soft pooling (Nr. 1) with an MCC of 0.975. A total of 345 candidates were
skipped while reaching a recall of 0.933. Table 7.3 lists the cumulative performance of
the best model, starting with an initial prediction that all candidates are semantic clones
(rejecting pipeline). The static stage finds 71.729 % (3816) of the FPs improving the
MCC by 0.409. The dynamic stage additionally removes another 27.330 % (1454) of FPs
but introduces 1.528 % (7) of the possible FNs. An improvement of the MCC by 0.527 is
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Table 7.4: Predicting MCC given the controled variables.

Dependent variable

MCC Sig.

Evaluation Strategy - greedy 0.040 (0.011) ∗∗∗

Dynamic FPR −0.094 (0.123)

Model FPR −7.152 (1.232) ∗∗∗

Model Pooling - soft 0.104 (0.011) ∗∗∗

Constant 0.858 (0.014) ∗∗∗

Observations 16

R2 0.925

Adjusted R2 0.898

Residual Std. Error 0.022 (df = 11)

F Statistic 34.002∗∗∗ (df = 4; 11)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

achieved via the dynamic stage. Finally, the model stage removes the remaining 0.939 %
(50) FPs but introduces additional 3.056 % (14) FNs. The model stage improves the
MCC by 0.039.

The worst experiment is given with exhaustive evaluation, D-FPR of 0.100, M-FPR of
0.010, and hard pooling (Nr.16) with a strong MCC of 0.787.

On average 5.884 % (340) of the total 5778 evaluations could be skipped. This equals
74.235 % of the total 458 TPs. On average 37.359 % (50 354) of the total 134 782 IO pair
evaluations could be saved via greedy evaluation. The average duration of the exhaustive
experiments was 2394 s leading to 414 ms per candidate. Skip experiments lasted on
average for 1988 s with 344 ms per candidate. The static stage lasted on average for
<0.001 %, the dynamic stage for 0.106 %, and the model stage for 0.893 % of the time
per candidate (see Table 7.3).

Table 7.5 lists the detection results of eight alternative clone detectors.
Simian, NiCad, and CCAligner found no clones in the dataset. PMD, SourcererCC,

Oreo, and iClones found some clones (< 20) but still have low recall (4 %). Nevertheless,
each mentioned detector has a very weak performance below an MCC of 0.20 ASTNN
3-Group CV has a strong performance with an MCC of 0.711. ASTNN with the leaky
evaluation has a very strong performance with an MCC of 0.976. A 3-fold grouped cross
validation of ASTNN resulted strong performance of an MCC of 0.711±0.15. The longest
computational duration is given by ASTNN with 1034 min.
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Table 7.5: Detection results of other clone detectors on the dataset.

Nr Tool Note Repr. Type Duration TP FP TN FN Precision Recall F1 MCC

1 Simian [76] Text 1 0.138 0 0 5320 458 – 0.000 – –

2 NiCad [131] Text 3 1.291 0 0 5320 458 – 0.000 – –

3 CCAligner [132] Token 3 1.109 0 4 5316 458 0.000 0.000 – -0.007

4 PMD [66] Token 2 1.389 8 12 5308 450 0.400 0.017 0.033 0.069

5 SourcererCC [133] Token 3/4 36.86 10 0 5320 448 1.000 0.021 0.042 0.142

6 Oreo [134] Model 3/4 79.00 17 5 5315 441 0.772 0.037 0.070 0.158

7 iClones [135] Token 3/4 0.980 13 0 5320 445 1.000 0.028 0.055 0.161

8 ASTNN [130] 3-Group CV Model 4 1034 296 29 1415 162 0.911 0.646 0.756 0.711

9 ASTNN (Leaky) Random Split Model 4 2028 442 4 5316 16 0.991 0.965 0.978 0.976

10 SCD-PSM Top 1-5 Model 4 1740 428 0 5320 29 1.000 0.936 0.967 0.965

Duration in seconds

7.6 Discussion

The goal of the study was to provide evidence of whether behavioral equality of model
elements generalizes to semantic equality of code elements (RQ1). Furthermore, we were
interested in the skip evaluation and its performance implications (RQ2 and RQ3).

7.6.1 Research Question 1 — Detection Performance

Table 7.2 and Table 7.3 present strong results in favor for RQ1. The MCC for the top-5
experiments was very strong with all MCCs being above 0.9. Even the worst experiment
still yielded a moderate performance of 0.749.

Table 7.5 provides additional context to the results by presenting the detection results of
alternative clones detectors. As expected, tools relying heavy on the textual representation
of clones have very low recall (Simian, NiCad, CCAligner, PMD). Most clones found by
the alternative tools are related to implementations that span only couple of lines. iClones
however, also finds large clones that include many array accesses and manipulations.
ASTNN is the best comparison tool and finds many clones with good precision. The
approach is sensitive to hyper-parameters and to the training and test split. This can
in the worst case lead to a test performance close to an MCC of 0. The low recall
for Type 1-3 detectors indicate the high quality of the dataset. The moderate recall
for Type 3/4 detectors indicate the high quality of SCD-PSM. Given this evidence, we
conclude that RQ1 holds.

RQ1 — Behavioral equality between model elements generalizes to semantic equality
of code elements allowing for semantic clone detection via probabilistic software
modeling.
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7.6.2 Research Question 2 — Skip Evaluation Scalability

The goal of the static and dynamic stage is to reduce the number of evaluations that
the model stage must conduct. Each stage incurs an increasing cost of evaluation per
candidate, with the model stage taking the largest share of 89 % of the evaluation
time. Every TP has to pass the model stage to be declared a clone (rejecting pipeline).
The skip evaluation avoided, on average, the re-computation of 74 % (340) of the TP
candidate pairs. The greedy evaluation avoided, on average, the evaluation of 37 %
of IO pairs. This offloads most of the evaluation time to the earlier stages that are
computationally inexpensive while shortcutting the model stage. In comparison to the
alternative detectors SCD-PSM needs substantial more time to compute (1.32 min vs.
29 min). An exception is ASTNN which has a similar runtime as SCD-PSM. Most of the
runtime of SCD-PSM is caused by the operational overhead, e.g., loading the model from
the database. Optimizing this overhead, as a theoretical maximum, could reduce the
overall runtime of SCD-PSM on the dataset to 6.49 min given the average durations for
each stage in Table 7.3. In conclusion, the skip evaluation reduces the number of model
evaluations that are responsible for most of the evaluation time to a quarter.

RQ2 — Skip evaluation reduces the number of evaluations for the most expensive
stage (model) in the SCD-PSM pipeline significantly.

7.6.3 Research Question 3 — Skip Evaluation Effects

Skip evaluation can cause cascading errors given an FP. Once an FP is introduced, every
semantic clone related to the FP has a chance to become an FP in the same (wrong)
clone class itself. These cascading FPs are potential sources of significant performance
degradation. Skip evaluation experiments are ranked higher and are significantly better
than experiments that conducted an exhaustive search. However, the absolute perfor-
mance gain is merely a MCC of 0.056 hinting a per-chance significance introduced by
the small sample size (16 experiments). Nevertheless, given the evidence in Table 7.2
and Section 7.5.6, we can conclude that skip evaluation does not affect the performance
of the detector.

RQ3 — The skip evaluation has no negative impact on the performance of the
detector given low false-positive rates.

In conclusion, SCD-PSM can detect semantic clones with high precision and recall.

7.7 Limitations

SCD-PSM inherits the limitations of PSM.
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PSM only models data in an application and not references. References are changing
addresses with no relation to the running program. Hence, they have no meaningful
underlying distribution that can be modeled. However, once references are dereferenced,
e.g., by accessing a field, their accessed data will be part of the model. Once part of the
model, it can be used in the context of SCD-PSM. Nevertheless, algorithms with the sole
purpose of manipulating and comparing references are unfit for SCD-PSM.

PSM explodes lists into singular values since distributions do not contain any order
information. This means, executables that change the order of sequences are matched
based on the values, not their order. As a consequence, an ascending and descending
sorting algorithm would be detected as a false positive. Extending PSM to distributions
of sequences alleviates the issue but is not a trivial task.

Another limiting factor is that the approach needs to run the program to build the
model. This means that SCD-PSM can only be applied to runnable programs.

Finally, SCD-PSM cannot detect Type 2-3 clones since textual similarities represent a
different problem set. A constructive proof is given by applying a textual and a semantic
clone detector on Listing 7.1 fa and a copy fx where Line 4 has a division instead of
a multiplication symbol. Most textual detectors will ignore this little change reporting
fa ≃ fx. Semantic clone detectors would report fa 6≃ fx since the behavior changed
(quotions of quotions instead of products of products). Inversely, we can add any random
number of syntactically correct statements to a copy of Listing 7.1 that do not change the
input and output behavior, e.g., adding (1 * 2 - int("2") * math.ceil(0.56879))
at Line 5. Such behaviorally neutral statements may be added in any number to any
statement. Textual clone detectors will at some point report fa 6≃ fx because the text
fragment diverges too far from its original. However, semantic clone detectors will report
fa ≃ fx as long as the added statements do not influence the original behavior.

7.8 Threats to Validity

A threat to validity is given by the code competition dataset (Google Code Jam) that
contains hard optimization problems that are not found in this density in large systems.
However, this evaluation strategy grows in popularity in recent years [136, 137, 138].
This growth is partially motivated by the raising evidence and criticism of opportunistic
evaluations, i.e., detecting clones in random open-source projects and letting human
oracles (often the authors themselves) decide on the correctness of clones [105, 139,
140, 141, 142, 1, 143]. Only the source code developers can decide whether a clone is a
clone. Any external reviewer can only hypothesize about the decision and process that
created the clone. Many latent factors can contribute to this process. For example, test-,
debug-, prototype-, or dead-code, deliberately introduced clones, or code that is related
to structural aspects of a system may not be considered a clone or do not warrant any
additional resources. To worsen things, the true recall is unknown for a given system even
if it would be possible to inquire the developers of the code for their reasons of cloning.
Given all these uncertainties, we decided to evaluate the performance in a controlled
laboratory environment. Finally, we decided against the use of BigCloneBench [120] as
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the benchmark does not contain compilable sources (only text fragments) nor do the
semantic clones follow the 0 % syntactic similarity target of this work.

7.9 Related Work

We started this chapter by defining what semantic clones means in the context of
our approach (Section 7.3). While our definition is motivated in the capabilities of
our approach, we can see strong similarities to the definition of Juergens [118]. Both
definitions define behavioral similarity via IO relationships. Also, Juergens already
discussed a notion of partial and conditional similarity. This understanding of Type 4
clones can be seen in multiple more recent studies [144, 145, 146]. In that, we see the
progress of the community in terms of Type 4 clones as the definition becomes more
specific.

Many studies evaluated textual clones. However, only a few studies are reporting
results on semantic clones without relaxing the definition of Type 4. Rattan [78] et al.
provided a review of clone detection studies. The review also investigated approaches
that tackle Type 4 clones. They conclude that some approaches solve approximations
(i.e., complex Type 3 clones) of Type 4 clones.

Test-based methods randomly trigger the execution of candidates and measure whether
equal inputs cause similar outputs. Jiang and Su [147] were able to find semantically
equivalent methods without any syntactical similarities. A similar approach was presented
by Deissenboeck et al. [145]. One issue with test-based clone detection is that candidates
need a similar signature. Differences in data types or the number of parameters and
conditional dependencies can not be effectively handled by the test-case generators or
the similarity measurement. SCD-PSM works similarly to test-based methods in that it
observes the runtime and compares the resulting behavior. However, SCD-PSM builds
generative models from the observed behavior capable of generating and evaluating
data. Missing dimensions are imputed by conditioning and sampling via the models.
This conditioned sample is then evaluated, allowing SCD-PSM to overcome the issue of
signature mismatches. Furthermore, PSM abstracts the data types into text, integer,
and floats mitigating data type mismatches.

Zhao and Huang [148] developed DeepSim, which learn control and data flow encodings
that are then used in a binary classification task. DeepSim uses neural networks to learn
a latent representation of the control and data flow. PSM also uses neural networks (each
model element) but learns an underlying representation of the runtime. Hence, the most
significant difference is in what is modeled (static vs. runtime information). DeepSim
also evaluated on a Google Code Jam dataset however used the problems from 2016.
DeepSim reached an F1 score of 0.76 on the GCJ 2016 competition, while SCD-PSM
reached 0.967 on the GCJ 2017. While not entirely comparable, we expect these results
to be a good approximation since the type of problems match.
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7.10 Conclusions and Future Work

In this chapter, we presented Semantic Clone Detection via Probabilistic Software
Modeling (SCD-PSM). PSM builds a Probabilistic Model (PM) from a program that can
be used to generate or evaluate runtime events. We used these PMs to detect semantic
clones in programs that have 0 % syntactic similarity.

We discussed the representation, search space, static-, dynamic-, and model-similarity
that form the main aspects of SCD-PSM. Our study evaluated SCD-PSM in great detail,
with an average MCC greater than 0.9. Also, the study showed the capability to control
the false-positive rate, which is a significant point for industry adoption. Finally, we
concluded that behavioral equality of model elements generalizes to semantic equality of
code elements.

Our future endeavors will focus on constructing a comprehensive semantic clone
detection benchmark. Furthermore, we see the future of semantic clone detection in
enabling fault localization applications [2].
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8 Case Study: Fault Localization

Abstract:
Software testing helps developers to identify bugs. However, awareness of bugs
is only the first step. Finding and correcting the faulty program components
is equally hard and essential for high-quality software. Fault localization au-
tomatically pinpoints the location of an existing bug in a program. It is a
hard problem, and existing methods are not yet precise enough for widespread
industrial adoption. We propose fault localization via Probabilistic Software
Modeling (PSM). PSM analyzes the structure and behavior of a program and
synthesizes a network of Probabilistic Models (PMs). Each PM models a method
with its inputs and outputs and is capable of evaluating the likelihood of runtime
data. We use this likelihood evaluation to find fault locations and their impact
on dependent code elements. Results indicate that PSM is a robust framework
for accurate fault localization.
Authors:
H. Thaller, L. Linsbauer, A.Egyed, and S. Fischer

Parts of this chapter was published at the 3rd International Workshop on Validation,
Analysis, and Evolution of Software Tests (VST), London, ON, Canada (2020) [3].

8.1 Introduction

Modern software development aims to design and control the quality of software. Test-
ing techniques, such as unit, integration, or system testing, and their automation via
continuous integration, provide a feasible and generally applicable approach for software
quality assurance. Software testing aims to find faults in a program. However, tests can
not localize the faults within a program’s source code. This is no issue for unit testing
since the tests are small enough (typically methods). However, fault localization for
integration and system tests can become a time-consuming task.

Fault Localization (FL) is the task of automatically finding faults in a program such
that a developer or an automated process can repair them. Finding a fault, i.e., the
real cause of an error, is a hard problem. Not only is it difficult to distinguish a
symptom (cascading error) from a cause (actual fault), but also multiple faults can work
in conjunction, complicating the localization process. The state-of-the-art FL techniques
like Spectrum-based Fault Localization (SBFL) [149, 150] traditionally rank statements
by their likelihood of containing a fault. This leads to localization weaknesses for complex
faults that span multiple lines [13] (76% of faults) or that are caused by the omission of
statements (30% of faults) [12, 151].





8.4 Approach

Each local PM represents an executable (e.g., a Java method) in the program. Inputs
are parameters, property reads, invocation return values, while outputs are the method
return value, property writes, and invocation parameters. The distinction between inputs
and outputs exists only on a logical level for the program. However, the models themselves
are multivariate density estimators (unsupervised models) with no notion of input and
output (joint model of all variables). Each model can generate new observations that are
similar to the initially trained data, e.g., to generate likely or rare (but plausible) test
data. Furthermore, each model can evaluate the likelihood of a given observation (e.g.,
to evaluate the adequacy of given test data). This evaluation is relative to the runtime
trace that was used to fit the model, e.g., a model based on production runtime will
evaluate observations differently than a model based on tests.

Local PMs in this work are Non-Volume Preserving Transformations (NVPs) [30, 152],
which are general and expressive flow-based density estimators. Each NVP is built via a
neural network that learn a function that maps latent random variables (e.g., Gaussian
variables) to the data (runtime events). Evaluating the likelihood with NVPs is done by
transforming the runtime events into the known Gaussian latent-space and computing
the Gaussian likelihood of the transformed events. More details on PSM and NVPs are
given in the previous Chapter 4 and Dinh [30, 152].

8.4 Approach

FL-PSM is built upon PSM. The fault localization is based on the likelihood evaluation
of these models. Given is a null-model Mnull of an executable and either an alt-dataset
Dalt of runtime events or an alt-model Malt with which a dataset is generated. FL-PSM
localizes faults by computing the mean log-likelihood of Dalt on Mnull and comparing it
to a critical value. More specifically,

LLDalt =
1

N

N∑

i

pMnull

(
Dalt
i

)
(8.1)

computes the average log-likelihood where N is the number of data points in D. Finally,

LLDalt − LLDnull < c (8.2)

evaluates whether there exists a significant difference between model and data. LLDnull

is the log-likelihood of Mnull to itself and captures the inherent bias. The critical value
c controls for Type-1 errors (false-positives) similar to other significance tests, e.g.,
log(0.001) indicates that 1 out of 1000 events is falsely considered to be significantly
different from the model.

8.5 Preliminary Study

This preliminary study shows how FL-PSM finds possible fault locations. Given is the
Nutrition Advisor to which 3000 requests are made based on data from the NHANES [153]
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Table 8.2: Likelihood values of a subset of element in the integration fault setting.

Model Element Cardinality LL Sig.

1 Servlet.handle Person.init multivariate 0 ✖

2 Servlet.handle init.height univariate -1.46 ✖

3 Servlet.handle init.weight univariate -2.33 ✖

4 Servlet.handle init.gender univariate -1.95 ✖

5 NutritionAdvisor.advice BmiService.bmi multivariate -6373 ✔

6 NutritionAdvisor.advice bmi.height univariate -0.95 ✖

7 NutritionAdvisor.advice bmi.weight univariate -0.50 ✖

8 NutritionAdvisor.advice bmi.return univariate -13.22 ✔

The integration between NutritionAdvisor.advice and BmiService.bmi, with the first
being the model, shows a difference in the return value of BmiService.bmi. Again, this
difference is also reflected in Table 8.2 (rows 5 and 8).

8.6 Discussion

The preliminary study showed how FL-PSM localizes faults. This localization is au-
tomated via likelihood-based significance tests that allow for statistical control of the
false-positive rate. The other important aspect is the visualization of the faults (Figures
8.2 and 8.3) and its impact on dependent elements. This allows for precise analysis of
the error chain and its influence across the program.

FL-PSM can only be applied if there is at least a version of the program. This is not an
issue from an industrial point of view since FL-PSM can be used after a few development
sprints. Another consideration is that FL-PSM localizes behavioral changes, including
intended changes. These intended changes can be filtered by incorporating source code
change information in the localization process. In addition, the visualization capabilities
of FL-PSM allow for quick manual inspections in cases of doubt.

In summary, the results and usability of FL-PSM are promising. Nevertheless, there
are still open questions concerning multiple fault sources and their clear separation.

8.7 Related Work

Most fault localization techniques are slice, spectrum, statistics, model, or machine
learning-based [149, 13].

The most similar technique to FL-PSM is Spectrum-Based Fault Localization (SBFL) [149].
SBFL techniques observe passing and failing executions and perform statistical inference
on the results. The result is a ranked list of statements, along with their likelihood of
being the fault location. While similar, FL-PSM works slightly differently in terms of
the abstraction level and source model. PSM abstracts statements and only considers
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properties, executables, and types along with their call dependencies. In contrast, SBFL
techniques predominately work on the statement level. This might seem like a drawback
at first. However, Parnin and Orso [151] identified that the detail of the results in
combination with high false-positive rates are one of the main issues of the low industrial
adoption of SBFL. PSM improves on these issues by providing control of the false-positive
rate and its level of abstraction (executables).

8.8 Conclusion and Future Work

We presented Fault Localization via Probabilistic Software Modeling (FL-PSM). FL-PSM
builds upon PSM and uses statistical inference to find possible fault locations in a
program. The localization is based on evaluating the likelihood of runtime events under
the model. We have shown how FL-PSM localizes and visualizes faults. In addition, we
discussed the difference between FL-PSM and its close relative SBFL.

Future work will focus on a full evaluation of the approach with multiple complex
subsystems. Furthermore, we want to conduct a user study for its practicality and
applicability.

In conclusion, FL-PSM is a promising new FL approach built upon PSM that provides
a general framework for probabilistic analysis of software programs.
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9 Case Study: Benefits and Drawbacks of
Representing and Analyzing Source Code
and Software Engineering Artifacts with
Graph Databases

Abstract:
Source code and related artifacts of software systems encode valuable expert
knowledge accumulated over many person-years of development. Analyzing
software systems and extracting this knowledge requires processing the source
code and reconstructing structure and dependency information. In analysis
projects over the last years, we have created tools and services using graph
databases for representing and analyzing source code and other software
engineering artifacts as well as their dependencies. Graph databases such as
Neo4j are optimized for storing, traversing, and manipulating data in the form
of nodes and relationships. They are scalable, extendable, and can quickly
be adapted for different application scenarios. In this chapter, we share our
insights and experience from five different cases where graph databases have
been used as a common solution concept for analyzing source code and related
artifacts. They cover a broad spectrum of use cases from industry and research,
ranging from lightweight dependency analysis to analyzing the architecture
of a large-scale software system with 44 million lines of code. We discuss the
benefits and drawbacks of using graph databases in the reported cases. The
benefits are related to representing dependencies between source code elements
and other artifacts, the support for rapid prototyping of analysis solutions, and
the power and flexibility of the graph query language. The drawbacks concern
the generic frontends of graph databases and the lack of support for time series
data. A summary of application scenarios for using graph databases concludes
the chapter.

Authors:
R.Ramler, G. Buchgeher, C. Klammer, M. Pfeiffer, C. Salomon, H. Thaller, and
L. Linsbauer

Parts of this chapter was puplished at the International Conference on Software Quality
(2019) [154]. Section 9.4.5 discuss an early technical realization of PSM called Gradient
and represents our main contribution in this chapter. Additionally, we contributed to
the findings presented in Section 9.5.



9.1 Introduction

9.1 Introduction

The size and complexity of real-world software systems are continuously increasing.
Today, many companies develop and maintain software systems containing hundreds or
thousands of source code files encompassing up to several million lines of code. They often
consist of a mix of various technologies and, additionally, a wide range of related software
engineering artifacts such as tests, documentation, change requests, bug reports, and
execution logs. Source code and artifacts encode valuable expert knowledge accumulated
over decades of development. They represent complex structures and related information
about various parts of the software system.

Nevertheless, the source code and a large part of the artifacts are stored in text files
organized in conventional directory structures. Analyzing software systems requires
parsing these files and reconstructing the structure and relationship information. This
first step is typically the precondition for a further, more advanced analysis aiming
at software understanding, interactive exploration, fault detection, visualization, and
documentation. Advanced analysis applications benefit from infrastructure for processing
and representing the structure of software systems in a scalable and extensible way.

In several projects developing tools and services for software analysis, we have created
different implementations of such infrastructures using graph databases for representing
source code, software engineering artifacts and their relationships. Graph databases [155]
are NoSQL databases that support graph data models, i.e., data represented in the form
of nodes connected via edges with each other. Graph databases are particularly useful
if relationships between nodes are a central characteristic of the stored data. They are
optimized for storing, querying, and manipulating vast amounts of highly connected data
by native support for relationships and enhanced traversal capabilities. Hence, they are
frequently used in a wide range of applications such as recommendation engines, social
networks, collaboration platforms, and medical research systems.

The objective of this chapter is to collect and share our experiences with graph
databases in representing and analyzing source code and software engineering artifacts.
We describe five different cases related to different application scenarios and project
contexts. Across all cases, the use of graph databases has emerged as a common element
in the implemented solutions – yet with variations in how the data is modeled, stored
and accessed. By comparing and discussing the different approaches, data models, and
underlying design decisions, we provide insights into the advantages and disadvantages
of graph databases for building analysis tools and services.

The remainder of the chapter is structured as follows. Section 2 provides an introduction
to graph databases and outlines related work. The research design of our experience
report is described in Section 3. Details about the five presented cases are described in
Section 4. The discussion of identified advantages and disadvantages follows in Section 5.
Finally, Section 6 concludes the chapter by summarizing the key findings and suggestions
for future work.
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9.2 Background and Related Work

A graph is composed of nodes and relationships. A node represents an entity (e.g., class,
method or variable) and a relationship represents how two nodes are associated (e.g., a
class contains a method, a method calls a method or reads a variable). Nodes and
relationships can have properties that are usually specified in form of key-value-pairs
(e.g., name=‘foo’). This general-purpose concept enables creating arbitrary connected
structures that closely match the modeled characteristics of the problem domain [156].

A graph database is an online database management system with create, read, update

and delete operations optimized for graph data models [155]. Graph databases are
specifically designed to support fast and scalable management, storage, and traversal of
nodes and relationships. This support allows to specify all relationships representing
connections between entities at the time the data is created, and storing them persistently
in the database. When the database is queried, these relations can be quickly traversed
without the need to compute them dynamically via foreign keys and costly join operations.

The widespread adoption of NoSQL databases for many problem domains also led
to the development of several databases specialized on graph data. Examples include
AllegroGraph (Franz Inc.), InfiniteGraph (Objectivity Inc.), Neo4j (Neo4j Technology
Inc.), and OrientDB (Callidus Software Inc.). A review and comparison of contemporary
graph databases can be found in [157].

The cases we describe in this chapter use the graph database Neo4j1. It is one of the
most popular graph databases, also offered open source. Neo4j is based on a native graph
storage and processing engine. It comes with the declarative graph query language Cypher
that supports the definition, manipulation, and querying of graphs. Cypher queries can
be issued using programming language specific drivers or the Web-based user interface
Neo4j browser. In addition, Neo4j supports a programming language independent REST
API and a low-level Java driver that can directly access database search facilities.

Many approaches and tools exist for analyzing software systems [158] and for performing
queries on source code [159]. Most of these approaches and tools rely on database
technologies to store structure and dependency information. Although the use of relational
databases is still prevalent, NoSQL databases are receiving more and more attention.
Zhang et al. [160] implemented a framework for querying heterogeneous code repositories
using the document-oriented database MongoDB.

Graph databases have been applied in a few instances, by Yamaguchi et al. [161] for
analyzing code to discover vulnerabilities, by Urma and Mycroft [162] for querying source
code, by Goonetilleke et al. [163] to implement the tool Frappe for code comprehension,
and in the open source tool jQAssistant2 for ensuring code quality of Java programs.
These applications are related to the cases described in our study. However, an analysis
of large-scale software systems similar to what we present in our case study has only
been described for Frappe [164].

1https://neo4j.com
2https://jqassistant.org
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9.3 Research Design

This chapter reports our insights and experiences gained from using graph databases in
the form of a collection of individual cases. Each case provides a first-hand account by the
authors, who have been personally involved in the reported cases and the development of
the associated tools and services.

Research goals and questions: Besides describing how graph databases are used, the
chapter explores what are the advantages and what are the disadvantage of using graph
databases for representing and analyzing source code and related artifacts.

We conducted the following steps to provide answers to these questions.

1. Case selection: The key criteria for selecting a case to be included in our report
were the use of a graph database, its application for supporting software analysis
tasks, and the development of related tools or services.

2. Case description: We used a template with a uniform structure related to a set
of open questions to describe the cases. The descriptions were prepared by the
authors involved in the cases.

3. Review of descriptions: The case descriptions were reviewed by co-authors not
involved in the case to assure that the descriptions are complete and consistent.
Variations and extensions to the structure of the descriptions were introduced to
capture individual aspects of the reported cases.

4. Compile overview: A table showing the essential characteristics of all reported
cases was prepared for comparing the cases and for identifying their commonalities
and individualities.

5. Exploration of individual cases: The cases were discussed and explored further
w.r.t. design decisions, encountered challenges, open issues, and feedback from
users. The findings were the basis for deriving a list of advantages, disadvantages,
and lessons learned for each case.

6. Synthesis of findings: The findings from the individual cases were aggregated
to high-level advantages and disadvantages as well as general lessons learned for
presentation in the chapter.

Several measures were taken to mitigate threats to validity. We decided to select
multiple cases with different characteristics to support generalization. The information
about the cases was provided by authors who were personally involved. To reduce the
resulting bias, we used a shared template for preparing case descriptions, which were
then reviewed and discussed with authors not directly involved in the cases.

Nevertheless, analyzing cases does not always allow to accurately identify the boundary
between the observed phenomenon and the context [165]. The advantages, disadvantages
and lessons learned we identified in our work may therefore still depend on influence
factors rooted in the specific project or application context. To counter this threat, we
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decided to put the primary focus of this chapter on the presentation of the individual
cases to support the reader in transferring the insights and experiences to his/her own
context.

9.4 Description of Cases

The five presented cases (Case 1-5 ) cover a variety of different applications scenarios
related to the analysis of source code and related artifacts. Each of them is based on a
unique goal and motivation, derived from its application in industry projects3 or research.
The common theme shared by all cases is the implementation of tool support and services
for which graph databases have been applied. Table ?? provides an overview of the
key characteristics of the five cases, summarizing the spectrum of different applications
realized with graph databases.

In the subsections below, the descriptions of the cases are based on the following
structure.

• Project context: In what application scenarios is the graph database used?

• Data model: What data model is used to represent the structure and relationships
of the analyzed source code or software engineering artifacts?

• Data sources: How is the data created and imported into the database?

• Access and usage: How is the data in the database accessed and used?

• Status and ongoing work: What is the current state of the work and what are
the next steps?

9.4.1 Case 1: AutoDoc for Lightweight Dependency Analysis

AutoDoc is a lightweight and flexible dependency analysis tool based on static code
analysis for various programming languages.

Project context:

The tool has been developed in a project with industry partners from the domain of
embedded systems. These systems have to fulfill high quality demands. The project
supported the industry partners in improving software quality by providing unit testing
and source code analysis technology. AutoDoc statically analyzes the source code of the
software system and generates information about components and their interrelations.
Furthermore, a set of code-related metrics is calculated including Halstead, McCabe
complexity, and the Microsoft maintainability index. The results are used by developers
in various ways, for example, to gain an overview of interdependencies between the units
of a software system, to determine areas for refactoring and testability improvements, or

3If not already revealed in previous publications, details about involved industry partners have been
omitted due to confidentiality obligations.
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Access and usage:

The data stored in the graph database is accessed via the standard Neo4j Web interface,
which supports users in exploring the analysis results by writing queries or executing
previously saved queries. We provide predefined queries to answer common questions
with respect to system components, dependencies, and accessed variables, for example,
“How often are global variables accessed?”, “What global variables are written by different
functions?”, “What functions access many different global variables?”, “What are the
most complex functions?”, or “Which functions have a high maintainability index?”. The
typical target audience of AutoDoc are developers performing a detailed analysis of the
system under development. We found that these users are comfortable with formulating
ad-hoc queries using the easy to understand Cypher query language.

Status and ongoing work:

AutoDoc is currently used by our industry partners in two main ways, first, for exploring
and refactoring of legacy code and, second, for continuous code quality assurance. While
the Neo4j browser seems sufficient for the first use case, the generation of an analysis
report is considered for the later. The currently analyzed software systems contain up to
72,000 lines of embedded C code. Nevertheless, it is planned to expand the application
of AutoDoc to analyzing a system of systems with more than a million lines of code.

9.4.2 Case 2: SCoRe for PLC Programs

SCoRe is a static analysis tool developed explicitly for analyzing PLC programs written in
IEC 61131-3 programming languages for industrial automation and production systems.

Project context:

The programming languages defined by the IEC 61131-3 standard [167] are used in
industry to implement the control software of real-time systems. The software runs on
dedicated hardware, i.e., programmable logic controllers (PLCs). Due to the focus on a
relatively small niche, these software systems have received little attention in the past.
Only a few software engineering tools are available, mainly proprietary programming
environments tied to PLCs of specific vendors. However, the size and complexity of
today’s industrial control systems increased the demand for additional tools supporting
quality assurance, testing, software architecture, and design tasks.

Together with our industry partners, we developed a tool for automated static code
analysis of large-scale PLC programs (c.f. [168], [169], [170]). The tool SCoRe (for Source
Code Review) supports detecting a range of problematic code constructs, violations of
programming conventions, and potential defects. In addition, we implemented support
for analyzing the software design and architecture of control systems by exporting the
structure and dependency information extracted in static code analysis available to
the graph database Neo4j. This solution allows exploring and examining the various
program elements and their dependencies via custom queries and by browsing the graph
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Figure 9.4: Data Model of SCoRe.

inserted as additional attributes to existing nodes. In that way, additional abstraction
layers can be created, which can again be used in querying and exploring the system.

Access and usage:

The generic Neo4j Web frontend is used to for submitting custom Cypher queries and
interactive exploration of result graphs. It can be easily accessed by all members of
the development team as only a Web browser is required. Together with our industry
partners we identified the following application scenarios for SCoRe: Evaluating the
compliance of the implementation with design decisions and guidelines (e.g., use of global
variables), computing metrics (e.g., coupling and cohesion), support for refactoring (e.g.,
identifying large program units), and analyzing the potential impact of changes (e.g.,
dependencies on changed elements).

Status and ongoing work:

The tool SCoRe is currently applied by two industry partners developing industrial
automation systems. It has been used to analyze systems up to 742 KLOC implemented
in the IEC 61131-3 programming languages, which resulted in about 450,000 nodes and
2,500,000 relationships in the graph database. The import into Neo4j required 21.4
seconds on a standard desktop computer. We are currently working on extending the
tool to support the simultaneous analysis of IEC 61131-3 and C/C++ as our industry
partners are also using a combination of both technologies in PLC programs.
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9.4.3 Case 3: eKNOWS Code Model Service

The eKNOWS Code Model Service (eKNOWS CMS) is a service that provides reusable
static code analysis functionality for Java programs via a dedicated REST API.

Project context:

eKNOWS CMS has been developed as the foundation of a microservice-based system for
extracting architectural information from large-scale service-oriented software systems
via static code analysis [171]. The system has been developed in close cooperation with
Raiffeisen Software GmbH (RSG), a provider of IT solutions for the finance domain in
Austria.

System overview:

Figure 9.5 depicts an overview of the eKNOWS CMS. As shown in the figure, eKNOWS
CMS is implemented as a microservice that provides static code analysis functionality
to a set of other microservices and tools. These analyses are provided via a dedicated
Representational State Transfer (REST) API. Static code analysis in the eKNOWS CMS
differs from many other code analysis approaches where analysis is performed via abstract
syntax tree (AST) visitors for deriving information from the system implementation.
Instead, we have implemented static code analysis by means of Cypher queries. We
provide the following kinds of analyses:

• Search for type and interface declarations of a specified module.

• Search for type, field, and method declarations with specified metadata.

• Search for extended types and implemented interfaces of a specified type declaration,
search for all type declarations derived from a specified type, and search for all
type declarations implementing a specified interface.

• Search for import relationships of a specified module, and search for modules
importing a specified module.

• Search for method declarations of types and interfaces.

• Calculation of call graphs and caller graphs for specified method declarations

• Search for XML documents and elements and attributes of XML documents

• Search for MANIFEST files and their attributes

• Calculation of type dependency relationships.

On top of the eKNOWS CMS we have developed a set of services that use the provided
code analysis functionality. These services then provide information to different tools
used at RSG. A detailed description of the developed services and used tools can be
found in [171].
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Figure 9.5: eKNOWS Code Model Service - System Overview

Data model:

Figure 9.6 depicts an excerpt of the data model of the eKNOWS CMS. The data model
consists of 83 different node and 88 relationship types that are used for storing complete
implementation artifacts (i.e., source code, XML, and Manifest files) in Neo4j by
converting these artifacts into graph structures. All implementation artifacts are assigned
to a dedicated module, which is the unit of versioning and deployment. Modules define
dependencies to other modules via import relationships. The eKNOWS CMS can
store multiple versions of the system implementation in Neo4j, i.e., we store all released
versions of a module along with the version of the current development iteration that
is overwritten whenever a cyclic build process is triggered. Modules can be aggregated
to applications to describe modular systems. Finally, we also store the results of
resource-intensive analyses, i.e., call graphs and dependencies between types in Neo4j to
avoid redundant analyses.

Data Sources:

The eKNOWS CMS operates on implementation artifacts that are written to Neo4j as part
of cyclic build processes. A dedicated Maven Plug-in fetches the system implementation
from version control systems (VCS) and stores this data in Neo4j (see Fig. 9.5).
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Status and ongoing work:

eKNOWS CMS has been successfully evaluated in an industrial case study at RSG in
which we have analyzed the entire codebase of RSG’s latest online banking solution
(see [171]). We have analyzed over 44 million lines of code, which were stored as
138,595,573 nodes and 138,141,947 relationships in Neo4j. The correlation between the
number of nodes and relationships results from the fact that we store implementation
structures 1:1 in the database without relationships between implementation artifacts.
Such relationships are either calculated on demand (e.g., inheritance and implemented
interfaces relationships), or they are stored as dedicated data structures (e.g., call graphs
and type dependencies) where references are defined via node IDs.

Currently, we are working on supporting additional use cases of stakeholders at RSG
by providing corresponding architecture information using the analysis functionality of
eKNOWS CMS. We will further extend the eKNOWS CMS with additional kinds of
analyses to improve our support for automated generation of viewpoint-based software
architecture documentation.

9.4.4 Case 4: Sherlock for Regression Test Case Selection

Sherlock is a tool that supports regression test case selection in manual system testing
based on test coverage and code changes.

Project context:

Regression testing [172] is performed after making changes to an existing software system
to ensure that these changes do not have unexpected adverse side effects on the behavior
of existing, unchanged parts of the software system. The straightforward approach to
regression testing is to re-execute all existing test cases to make sure they still pass.
However, many software projects have a large number of test cases, and it is often
impossible to re-execute all of them every time a change has been made. Regression test
case selection aims at selecting a reasonably small subset of the existing test cases, which
still has a high chance of detecting any issues introduced by changes.

We developed the tool Sherlock for selecting regression test cases based on a list of
locations in the source code where changes have been made and the information which test
cases cover these source code locations [173]. Sherlock specifically supports interactively
selecting test cases for manual regression testing in the context of a large-scale software
product by OMICRON electronics GmbH. This software product encompasses more than
30 modules (about 2.5 MLOC in total, mostly implemented in C++) that interact with
each other and share a common framework as well as various base libraries and hardware
drivers. The system has grown to its current size over a time span of more than two
decades. Engineers in different roles (i.e., developers, architects) have contributed over
time, creating a large and sophisticated software system with complex dependencies
between application modules, framework components, custom interfaces, and various
third-party libraries. Thus, today, one of the foremost challenges of effective and efficient
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reveal enough dependencies relevant for test case selection, e.g., because of multi-language
interoperability or reflection mechanisms. For this reason, code coverage information
was collected to expose dynamic dependencies as well. Today, check-in information and
source code structure are kept up-to-date by a Windows service that runs on a daily basis.
This service uses custom adapters to import 21,000 check-ins and more than 200,000
methods that are grouped in 20,000 files. Coverage foot-prints for currently 400 tests are
imported and updated manually after a test case was successfully profiled.

Sherlock is a valuable aid for providing guidance in selecting appropriate regression
test cases for testers who lack detailed knowledge of the structure and dependencies of
the system under test. In an evaluation, we found that a junior tester using Sherlock
was able to produce test suites with less or equal effort and at the same level of accuracy
as highly experienced testers who accomplished the same tasks manually [175].

9.4.5 Case 5: Gradient for Probabilistic Software Modeling

Gradient is a Probabilistic Software Modeling (PSM) [176] system prototype that uses
static and dynamic analysis to model the structure and behavior of a program.

Project context:

PSM systems allow engineers to inspect a program’s structure (Types, Properties,
Executables) and behavior (runtime objects) using statistical models. These statistical
models can be used in applications such as visualization of runtime behavior (e.g., possible
values of property age form a Person class), finding the most likely value combination
of the parameters of an executable or test-case generation. The program structure is
extracted via static code analysis while the behavior observations are extracted via
dynamic code analysis. The static and dynamic information is then used to build a
network of probabilistic models with similar behavior as the original program. The
objective of Gradient is to empower software engineers with the possibility of behavioral
analysis of programs without switching the level of abstraction (Types, Properties,
Executables) or to content themselves with a single execution trace (e.g., debugging).

System overview:

Gradient leverages static and dynamic code analysis and builds a network of models that
mirror the system under inspection. Naturally, it needs multiple stages, components, and
technologies to work.

Figure 9.9 shows an overview of the Gradient system that is split into two parts, the
client- and server-side, operating on three levels: Development, Runtime, and Modeling.
First, ➀ the program structure is extracted from the Source Code and stored directly
into the Graph Database (Neo4j) ➁. Then the source code is compiled and patched
with monitoring aspects that execute the monitoring logic. The Patched Byte code ➃,
containing additional monitoring logic, directly stores Runtime Events into the Document
Database (MongoDB). This entire process is handled by the Gradient client which in
addition reports (not shown in Figure 9.9) the analysis progress to the Gradient server.
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data model. Project Elements give code elements a project context and enable model
versioning. Model Elements capture additional concepts related to the statistical models.

The Code Elements section in Figure 9.10 shows that the Gradient data model has a
higher level of abstraction than the traditional Abstract Syntax Tree (AST) as it only
considers Types, Properties, and Executables. In compensation, the data model introduces
Invocation and Access nodes as explicit relationship concepts that are only implicitly
captured on a statement level in an AST. Another addition is the ElementType that allows
direct access to typing information of typed elements, which cannot be straightforwardly
retrieved from an AST.

Project Elements section contains Project nodes and Version nodes used to manage
different projects registered on the same Gradient server. Type, Property, Executable
are also Versionables containing a version hash that, along with their qualified name,
uniquely identifies them within a project and its versions.

This also enables the database to reuse Versionables, along their associated statistical
models, with the same qualified names and version hash across different versions. Modeling
Elements attach model specific information to code elements that are modeled. For
example, Model contains the id of the statistical model stored in the MongoDB.

Data sources:

Gradient has two sources of data, 1. static code analysis on the source code, 2. dynamic
code analysis executed by the patched byte code. The static analysis parses the source
code via Spoon [34] and transforms it into the Gradient model. This graph is then written
into Neo4j providing the structure. The dynamic analysis is executed by the patched byte
code that contains instructions to write monitoring events into the MongoDB. Neo4j can
also be thought of an index database where each interaction starts by retrieving specific
nodes that point to raw data in MongoDB. This raw data can be millions of runtime
events, each being a JSON document or binary data of the statistical models.

Access and usage:

Gradient allows engineers to interact with their source code by inspecting the behavior
of types, properties or executables. Neo4j in this setting is used as a persistent data
structure of the source code that reflects the parts that are exposed to the user, and as
index database for binary data stored in MongoDB. Engineers that use Gradient interact
mainly via a graph in list or visual form with the statistical models, or via pre-configured
queries and tasks that fully abstract the structure.

Status and ongoing work:

Gradient is an ongoing research prototype for Java to demonstrate the feasibility of
Probabilistic Software Modeling. It currently implements the static and dynamic analysis
as most parts of the statistical modeling and simple views to view structure, models,
and the raw data. High priority features for the future are tools for test-case generation,
anomaly detection, and a frontend that allows simple interaction with the models for
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software developers unfamiliar with statistical modeling. Also, interactions between
statistical models of different versions of the source systems are part of the future work.

9.5 Discussion

This section summarizes the insights and lessons learned from the five reported cases
via a discussion of advantages and disadvantages of using graph databases. In each case,
slightly different aspects of often the same advantage or disadvantage were observed.
We therefore aggregated the individual findings collected from the different cases into
high-level statements. For each of these statements, examples describing the experienced
benefits and drawbacks are given, including references to the cases where they have been
found.

9.5.1 Advantages

Graph databases (e.g., Neo4j in our case) are a suitable choice for storing and querying
the data extracted from source code and related artifacts.

+ Graphs are a natural way to represent the manifold dependencies that are om-
nipresent in software systems. Working with dependencies has been an essential
motivation and was often the central aspect of the tools we developed (Case 1-5 ).

+ Graph databases can handle data from large-scale software systems up to several
millions of lines of code as demonstrated by Case 3. The limit of Graph databases
rather lies in the type of data that has to be processed. For log-like execution data
as in Case 5 a document-centered database (e.g., MongoDB) is preferable; in this
case, both databases were used in combination.

Graph databases provide excellent support for rapid prototyping and exploring different
options for working with artifacts from software engineering. This advantage derives from
NoSQL databases being schema-less and highly extensible.

+ Building tools on top of graph databases allow to start using them early, while
still under development, and to advance the tools and the underlying data model
whenever new requirements or usage scenarios are encountered (Case 1-5 ).

+ In Case 4 the Neoclipse plugin for Eclipse has been used in a first prototype to
demonstrate the integrating of the tool Sherlock into the development environment.

+ In all five cases presented above the implemented tools emerged out of research
projects, where the initial versions of the tools were repeatedly revised and succes-
sively extended, e.g., to match the diverse needs of our industry partners (Case
1-4 ).

Graph query languages (e.g., Cypher in our case) provide a powerful and simple way to
understand, retrieve, and manipulate graphs representing source code or related artifacts.
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+ Structured processing of code and other artifacts was found to be easier when
using the expressiveness of graph queries than with conventional, programmatic
approaches (Case 2 and 3 ). For instance, searching the AST for all method
call expressions of a particular method declaration can be achieved by a simple
query instead of implementing an AST visitor that requires visiting all method call
expressions of a compilation unit and determining for each expression if it belongs
to the specified method declaration by checking all parent elements until a method
declaration expression is found.

+ In Case 1 and Case 2, the users of our tools were developers. For them, it was
straightforward to write queries after a short introduction to the Cypher query
language. Dozens of queries have been created so far, supporting a wide range of
common analysis tasks. The queries are stored as scripts that can be easily shared
and adapted to new analysis tasks.

+ The standard Neo4j Web frontend was used for querying the graph structure and
to retrieve the required information about the analyzed software system. Therefore
it was not necessary to develop a dedicated client or user interface in Case 1 and
Case 2.

9.5.2 Disadvantages

The generic frontends available for graph databases (e.g., Web-based Neo4j browser) are
often not adequate for supporting end users in performing the specific tasks involved in
the studied cases. Custom user interfaces had to be implemented for several of our tools.

• The standard Web interface of Neo4j provides a convenient way to submit queries
to the database and to review the results using a visualization of the graph.
Nevertheless, the dynamic visualization makes it difficult to maintain the overview
when working with large result sets containing dependency data (Case 1 and Case
2 ). Alternative clients (e.g., yFiles Neo4j Explorer) offer improved layouts and
comfortable filtering, but the inherent weaknesses of a generic solution remain.

• Support for specific graphical representations cannot always be provided. In Case
2, for example, company partners suggested to display all program elements imple-
mented in the same unit grouped using visual containers (e.g., boxes) representing
these units. In contrast, a generic visualization will show the “implemented in” re-
lationship as lines connecting each of the program elements with nodes representing
the units.

• The generic user interface does not provide any guidance for users to perform tasks
step by step, e.g., in selecting test cases based on a previous selection of a set of
code changes (Case 4 ).

• Available frontends are usually restricted to explore data of only one graph database.
It is not possible to connect data from two or more databases running in parallel
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or from an external data source, e.g., when combining the static structure of a
software system with code changes (Case 4 ) or its dynamic behavior (Case 5 ).

Graph databases show a lack of support for time series data. This deficiency can be
attributed to their specialization on graph data and the philosophy followed by many
NoSQL databases, which is “do one thing and do it well”. Neo4j, as we used it in our
cases, does not offer any features specific for storing or querying time series data.

• In modeling software engineering artifacts, however, time-related dependencies play
a major role due to the evolutionary and incremental approach in which software
is developed. Thus, we had to develop graph models that can represent a specific
combination of code, artifacts, and dependencies at a particular point in time, e.g.,
by relating them to dedicated nodes representing software releases or versions (Case
3-5 ).

• In Case 4, some of the nodes (e.g., work items) also contain timestamps as attributes,
which were required to formulate queries with an additional where clause to retrieve
all elements in a specific time span.

• In Case 5, log-like time series data from execution is stored in a separate database.
The characteristic property of such data is the sequential ordering of the entries,
which are recorded over time.

• Time points are also relevant in Case 1 and Case 2. However, in these cases,
the pragmatic solution was to store only a snapshot of the software system at a
particular point in time in the graph database. For analyzing another snapshot,
e.g., a new build or version, the entire data set has to be replaced. Managing the
dependencies to builds, releases, versions, etc. is left to the users applying the tools.

9.6 Summary and Conclusions

In this chapter, we described our experiences and lessons learned from building software
analysis tools and services based on graph databases. We presented five different cases
related to different application scenarios and project contexts. Each of the five cases (Case
1-5 ) is an example showing that graph databases can be effectively used for representing
and analyzing source code and software engineering artifacts. The diversity as well as
the size and complexity of the reported cases underpin this finding.

A broad range of program elements is stored in the form nodes and relationships in the
graph databases. They range from dependencies such as function calls and read/write
access to variables (Case 1 ) to the entire AST of large-scale software systems (Case
3 ). Software written in various programming languages has been represented as graphs,
e.g., C, C++, C#, Java, and IEC 61131-3 languages (Case 1-5 ). The resulting size and
complexity of the graph structures range from only two distinct node types and 6 distinct
relationship types (Case 1 ) to 83 node types and 88 different relationship types (Case 3 ).

The graph databases showed a high level of scalability when used for analyzing up to
44 million lines of code at the level of individual syntax elements. The resulting graph
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contained more than 138 million nodes and about the same amount of relationships,
which were stored in the database (Case 3 ).

The graph models were used for capturing the data extracted from various different
artifacts: Source code files (Case 1-5 ); system configurations in form of XML files (Case
3 ); work items, check-ins, software tests, and coverage information (Case 4 ); project and
version information (Case 3-5 ).

The databases are populated in a single initial import replacing existing data (Case
1-2 ) or they are updated in increments partially extending the data in the database
(Case 3-5 ). The various approaches for accessing the data include Neo4j’s standard Web
interface (Case 1-2 ), custom built client applications (Case 3-5 ), a REST API (Case 3 ),
and an export interface (Case 4 ).

The insights and lessons learned we collected from using graph databases have been
compiled into a list of advantages and disadvantages to support decisions in related and
future applications.

The key advantages, relevant for choosing graph databases as storage option in software
analysis, are related to the versatility of the graph data model. It was found suitable to
represent all kind of structures and relations usually encountered in software systems. It
can be used to represent dependencies between individual program elements as well as
for links across technology boundaries. In addition, the flexibility and scalability of graph
databases provide an ideal basis for prototyping and evolving analysis solutions. Finally,
specialized graph query languages are a powerful yet easy to use means for traversing the
huge amounts of nodes and relations required to represent large and complex software
systems.

The identified disadvantages concern, first, the limited usefulness of standard database
frontends for end users. The issue with highly generic clients such as the Neo4j browser
and similar tools is not a limitation in their functionality. On the contrary, they provide
too many options. Custom interfaces built for end users offer only a fraction of their
functionality, but they are meaningful in context of a specific usage scenario. Second,
graph databases provide no support for time series data. Although this is natural
consequence of the specialization of graph databases, there is nevertheless the need to
represent time-related aspects in all kind of data produced in software development
processes.

In future we expect to see a rising number of projects using graph databases for
source code analysis and related software engineering tasks. As contribution we plan
to investigate ways to combine storage approaches specialized for graph and time series
data for building a new tool and service infrastructure.
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Table 9.1: Overview of the Reported Cases.

AutoDoc SCoRe eKNOWS
CMS

Sherlock Gradient

Goal and
motivation

Lightweight,
flexible, cus-
tomizable
code analysis

Analyzing in-
dustrial PLC
software

Service for
reusable
static code
analysis

Dependency
analysis for
regression
test selection

Probabilistic
software mod-
eling

Application
context

Industry
projects

Industry
projects

Industry
projects

Industry
projects

Research pro-
totype

Represented
source code
or artifacts

Call, read,
and write
dependencies
in various
languages
(currently C)

PLC pro-
grams written
in IEC 61131-
3 languages

Java systems
(from high-
level config to
source code
statements)

Source code
structure
(C++, C#),
code changes,
system tests,
test coverage

Static code
structure
and models
of behavior
(Java VM
languages)

Users Developers Developers,
software ar-
chitects

Developers of
software engi-
neering tools
and services

Software
testers, qual-
ity and
release man-
agers

Researchers,
developers

Usage sce-
narios

Analysis of
dependencies
enriched with
metrics

Design and
architec-
ture review,
support for
refactoring

Analysis of
large-scale
systems,
evolution
analysis

Selecting re-
gression tests
for source
code changes

Program com-
prehension
and behav-
ioral analysis

Data access
and user in-
terfaces

Neo4j Web in-
terface

Neo4j Web in-
terface

Different (3rd
party) tools,
REST API

Custom
client, export
to test tool

Custom Web
interface

Data
sources

Source code
files

Source code
files

Version con-
trol systems
(VCS)

VCS, task
management,
coverage
analysis, test
management

Source code,
execution
traces from
run-time

Schema size
(distinct ele-
ments)

2 node types,
6 relationship
types, 9 met-
ric values

24 node types,
15 relation-
ship types

83 node types,
88 relation-
ship types

9 node types,
15 relation-
ship types

11 node types,
20 relation-
ship types

Size of an-
alyzed sys-
tem

72 000 LOC C
code

742 000 LOC
IEC61131-3

44 million
LOC Java

2.5 million
LOC C++
and C#

120 000 LOC
Java

Data im-
port/up-
date strat-
egy

Import, exist-
ing data re-
placed

Bulk import,
existing data
replaced

Cyclic builds,
data partially
updated

Nightly and
manual up-
dates, data
partially
replaced

Triggered
builds with
incremental
updates

141



10 Discussion

The concluding discussion should evaluate the research questions posed in 1.1.

10.1 Research Question 1

RQ1 answers whether programs can be transformed into probabilistic models. In Sec-
tion 3.2 we introduced probabilistic modeling. From this section, it should be clear that
most processes can be modeled into a probabilistic model with some appropriate structure
of variables. However, many processes are too complex to be effectively modeled. In
Chapter 4 we presented how a program can be systematically and automatically trans-
formed into a model. The procedure is a hybrid approach of static and dynamic analysis
implying a complex process. This complexity also implies that PSM is hard to reproduce
when implemented from scratch. However, PSM builds upon well-known concepts such
as static analysis, dynamic analysis, and inference with probabilistic models. Also, the
generated artifacts, i.e., structure, behavior, and inference graph, existed already in one or
the other form. The structure graph is an abstract semantics graph used in any program
analysis task such as compiler optimization, or design pattern detection. While the details
might differ, the conceptual essence is the same. Similarly, the behavior graph exists in
many tracing applications and is ultimately only an extended stack trace of the program.
The inference graph is a cluster graph whose local models are NVPs. Both are well-
known and used throughout the machine learning and probabilistic modeling community.
The feasibility study in Chapter 5 evaluated an actual implementation of the presented
methods. The studies showed that the process of generating the models is stable and
yields good results in terms of their estimated densities. This evidence was confirmed in
Chapter 7 in which the models could successfully and with high reliability detect semantic
clones. However, both chapters also showed weaknesses in the transformation. PSM
works best for business logic. Libraries that only manage references but never dereference
the underlying data are not a good fit for PSM. Also, the implemented prototype does
not model the distribution of sequences. This may cause incorrect inference results given
certain PSM applications (e.g., semantic clone detection). Given the theoretical and
practical evidence, we can conclude that:

RQ1 — Programs can be transformed into probabilistic models via an automated
and systematic process.

RQ1.1 answers whether the structure of a program can be preserved in the resulting
model. In Section 3.2 we saw that probabilistic models represent the joint distribution of
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variables. In general, there are many dependency structures that can model the same joint
distribution. However, they vary in their accuracy. PSM uses the structural information
that is present in the program itself. Not only is this the true structure of the process
that generates the behavior, but it also leads to a model that reflects the program itself.
This is in line with the structural closeness requirement. The mapping between program
and IG needs little mental overview especially in its cluster graph representation. In
comparison, the factor graph representation provides more details and is useful if one
wants to zoom into a subset of the program. However, there are differences between
the IG and SG. These differences are caused by reference elements that are not directly
present in the cluster graph. Also, the factor graph representation does not highlight
the call order of factors. Any of these elements may be added as visual guides but are
not included per se. Important here is that statements themselves are not structural
elements but rather algorithmic details that are not the target of PSM. Given that the
code and model elements have a one-to-one relationship, and that elements that are not
modeled can be added as visual guides we conclude that:

RQ1.1 — The probabilistic model preserves the structural properties of the modeled
program.

RQ1.2 answers whether the behavior of a program can be preserved in the resulting
model. A clear distinction between use-case and behavior preservation is needed to
answer this question. First, it is important to recognize that each model can only contain
the behavior of specific executions of a program. These executions can be representative
of the behavior or are only representative of a small subset of it. For example, if the
(apparently) nondeterministic behavior of a program is of interest, then the model will
only capture this behavior. This leads to an important fact, PSM only builds a model
of the program, not a perfect copy. Think of a simulated car which can only go back
and forth but can not take turns. It is of little use in a navigation simulation through
a city center, however, it is valid if one wants to evaluate the aerodynamics of the car.
Similarly, PSM models have a certain use-case, e.g., semantic clone detection. In this
case the actual inputs are secondary but the input and output relationship in executables
are of interest. Hence, the scope of behavior that is modelled is part of the use-case
and the responsibility of the PSM practitioner. The responsibility of the model is to
capture the behavior of the use case as precisely as possible. Chapter 5 included a
visual inspection of the data showing that the density estimates are of high fidelity. A
sample of this is given Section 5.1.5. Chapter 7 showed that PSM can effectively detect
semantic clones. These programs are part of a programming competition with problems
of varying complexity. The precision with which the clones were found, especially the
false-positive rate, indicates that the models are capable of detecting semantic differences
and similarities. Chapter 8 modeled a simple but typical error in programs, which was
successfully localized along with an error path. These are only a handful of examples
and there is further research needed to fully evaluate this research question. However,
given the current evidence, we can conclude that:
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RQ1.2 — The probabilistic model preserves the behavioral properties of the modeled
program.

10.2 Research Question 2

RQ2 answers if PSM scales up to a certain computational horizon. The computational
horizon depends on the application and needs a case-by-case evaluation. However, there
are some computational limits associated with most use-cases, e.g., that the transformation
from program to the IG does not take several days. Chapter 5 showed that the extraction
of the SG is a negligible overhead. Furthermore, we have seen that the extraction of the
BG takes only minutes. However, this depends on the use-case and trigger that is applied.
For example, extracting the BG for semantic clone detection is fast as the triggers can
be limited (less than 20 sec for SG, BG, and IG). Ultimately, it is a trade-off between
accuracy and speed where the accuracy saturates quickly. A more involved use case is
the probabilistic modeling of server environments, e.g., to detect anomalies. In these
cases, the IG needs to be updated continuously.

The time required for creating the IG and optimizing the local models is in the range of
seconds. This is an acceptable time frame for most applications. However, there are use-
cases that may not scale, such as debugging. Debugging has a use-case horizon ranging
from seconds to a few minutes. In such a case, running, monitoring, and constructing
the entire IG may not scale. Local construction of target subsystems or incremental IG
construction may alleviate potential scaling issues for such use-cases. However, these
approaches still need investigation. For the presented use-cases, i.e., program modeling,
semantic clone detection, and fault localization, we have seen acceptable computational
costs in the range of seconds for executables. Given the evidence on the presented
use-cases, we can conclude that:

RQ1.2 — PSM scales for program modeling, semantic clone detection, and fault
localization. However, more research on various use-cases are needed to fully confirm
RQ2.

10.3 Research Question 3

RQ3 answers whether PSM is useful for software engineering tasks. Evaluating the
usefulness of a framework takes years. However, a first glimpse of the potential of PSM
is already given in this thesis. In Chapter 7 we present a semantic clone detector that
is capable of detecting behavioral similarities between executables. The use-case of
finding semantic clones is not only state-of-art but enables many related applications. For
example, fault localization (Chapter 8) builds upon the same concepts as semantic clone
detection. The main difference is that semantic differences are detected between versions
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of the same executable. Anomaly detection is a use-case that builds upon the same
concepts of semantic similarity but operates in production environments of programs.
Each of these use-cases is important in the context of software engineering. However, it
is still too early to conclude general usability of PSM as envisioned in this thesis. Given
the present evidence, we can conclude that:

RQ3 — PSM is useful for detecting semantic similarities in programs and be-
tween program revisions. However, more research is needed to conclude the general
usefulness of PSM.
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11 Conclusions

In this thesis, we presented Probabilistic Software Modeling (PSM), a modeling paradigm
for programs. The presented methods comprehensively describe how programs given
by their source code can be transformed into a probabilistic model. These probabilistic
models can be used in a wide range of analysis and generative applications. Furthermore,
we provided preliminary chapters that lead to PSM or extended it.

11.1 Thesis Contributions

The main contributions of this thesis were organized as follows.

Vision and Applications We presented our vision for probabilistically modeling programs.
This complements the existing body of work on software modeling and creates
new research directions and applications. We outlined potential PSM applications
and their use-cases for program comprehension, software analysis, and generative
analysis of programs. These applications were later evaluated. Some, such as
semantic clone detection or fault localization, were evaluated directly in the form
of a study. Others, were evaluated indirectly as part of the presented work. Finally,
the vision and applications point to potential future work in the context of software
modeling and PSM.

PSM Method The methods involved with PSM are the main contribution of this thesis.
This includes 1. the general workflow on how a program can be transformed into a
probabilistic model, 2. the extraction of the program structure in form of a structure
graph, 3. the extraction of the program behavior in form of a behavior graph, 4. the
combination of the structure and behavior graphs into an inference graph and
the operations that can be applied to it. Finally, we presented the theoretical
foundation of PSM by unifying existing research on probabilistic models with the
concepts used in PSM.

Feasibility The feasibility study provided basic but essential insights into the modeling
of programs via PSM. These insights showed us that programs expose many code
elements that are eligible for PSM modeling. Furthermore, we saw that only a
small proportion of the code elements cause most of the program behavior. We
then presented the extent of the inference graph of real-world programs. Finally,
we evaluated the capabilities of preserving information in long inference chains.

Text-based Clone Detection As a preliminary study into semantic clone detection, we
presented a comprehensive study of textual clones in PLC programs. The study
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showed that textual clones are present in many types of programs. Furthermore, the
study showed that existing text based clone detectors are good at finding structural
similarities in programs. However, logical clones were hardly found and confirmed
by human raters. This result lead to the hypothesis that semantic clones might
only reliably be found by inspecting the runtime behavior of programs.

Semantic Clone Detection A natural follow-up from the text-based clone detection
study was the study on semantic clones. In this study, we presented a state-of-art
clone detector that could reliably detect semantic clones by comparing the input
and output behavior of methods. It extended PSM with a detection pipeline that
compares methods on a static, dynamic, and model level. The main contribution
was the use of the inference graph and the likelihood ratio test to find semantically
similar model elements. This approach is also the foundation for other comparative
PSM applications such as fault localization. The semantic clone detector showed a
strong performance with an MCC of more than 0.9 on detecting semantic clones in
coding competitions and classical semantic clone problems.

Fault Localization The preliminary study on fault localization showed how PSM can
be used to find faults within programs. It used the same mechanism as semantic
clone detection in which the behaviors of two different versions of a method were
compared. The study focused on the analysis of the Nutrition Advisor. Behavioral
changes in the program including the path of changes in the structure graph were
successfully detected and quantified. The work is an important step for a more
elaborate study on fault localization via PSM.

Source Code Analysis via Graph Databases Finally, we used the structure graph of
PSM to conduct a study on static code analysis via graph databases. The study
evaluated various different tools including Gradient, a PSM prototype, and their fit
for static code analysis. We showed that graph databases have various advantages
for static code analysis. Especially, the graph query language is particularly
advantageous for the various graphs used in PSM. However, the lack of scalability
for other complex data formats, such as time-series, pose potential problems for a
fully-fledged PSM implementation.

11.2 Future Work

Probabilistic Software Modeling is a young methodology compared to existing methods in
software engineering. Many applications from Section 1.2 are potential future directions
of research. For example, extending the fault localization in Chapter 8 by evaluating it on
existing fault localization benchmarks. Another future direction which is of high relevance,
and which fits well with the generative capabilities of PSM, is test-case generation. A
more elaborate future work would combine fault localization with test-case generation to
automatically generate tests for detected faults. Another future direction is to integrate
program performance metrics such as execution time and memory consumption of
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executables. Extending the existing inference graph with these performance metrics
could allow the inference of potential performance bottlenecks in programs.

A challenge is given by lists and sets in programs that are exploded into singular
values in the current version of PSM. An extension of PSM might consider modeling
distribution of sequences for these code elements, in order to reduce the modeling error
that propagates to applications like semantic clone detection.

Improving the model fidelity in regard to discrete variables would improve the precision
of the inference and their applications. One could replace the NVPs with more recent
versions of flow-based models that are more expressive. Another possibility is to optimize
the model class of local models by their model elements.

Another avenue of future research is incremental IG construction. Evolving the model
with the application use-case allows one to effectively reduce the number of computations.
For example, instead of re-creating the entire model, one re-creates only parts of the
model if a change is pushed by a developer. This could reduce the creation time of the
fully updated model to several seconds, making it usable in live programming sessions,
such as debugging.

In conclusion, there are many practical and theoretical challenges in the context of
PSM. This thesis presented the foundation of PSM, and paves the way to a challenging
new landscape of software analysis.
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